Câu hỏi:

29/03/2022 330

Cho hàm số y=f(x) có bảng biến thiên như hình vẽ

Cho hàm số f(x)  có bảng biến thiên như hình vẽ. Số nghiệm của phương trình f(x)-1=0  là: (ảnh 1)

Số nghiệm của phương trình f(x)1=0 là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hàm số f(x)  có bảng biến thiên như hình vẽ. Số nghiệm của phương trình f(x)-1=0  là: (ảnh 2)

Số nghiệm của phương trình f(x)1=0 là số giao điểm của đồ thị hàm số y=f(x) và đường thẳng y=1.

Theo bảng biến thiên đã vẽ ở trên thì đường thẳng y=1 là đường thẳng luôn song song với trục Ox và cắt đường cong của hàm số y=f(x) tại 3 điểm phân biệt.

Vậy đáp án là D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD  là hình bình hành. Gọi M,N  lần lượt là trung điểm  AD và  BC. Giao tuyến của hai mặt phẳng SMN  và  SAC là (ảnh 1)

Xét hai mặt phẳng (SMN) và (SAC) ta có:

      {S(SMN)S(SAC)(1)                   {OAC(SAC)OMN(SMN)(2)

Từ (1) và (2) suy ra (SMN)(SAC)=SO.

Đáp án D

Lời giải

 Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác đều cạnh  a. Cạnh bên AA'=A căn 2. Khoảng cách giữa hai đường thẳng A'B và B'C là (ảnh 1)

Gọi D là điểm đối xứng với A qua B. Khi đó A'B//B'D.

Suy ra: d(A'B;B'C)=d(A'B;(B'CD))=d(B;(B'CD)).

Kẻ từ B đường thẳng vuông góc với CD và cắt CD tại K

Tam giác ACD vuông tại C (vì BA=BC=BD) có B là trung điểm của AD nên K là trung điểm của CD.BK=12AC=12a.

Kẻ BHB'K tại H suy ra: d(B;(B'CD))=BH.

Ta có: 1BH2=1BK2+1BB'2=4a2+12a2=92a2BH=a23.

Vậy d(B;(B'CD))=a23.

Đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay