Câu hỏi:

24/04/2022 1,585 Lưu

Cho khối chóp SABC có đáy ABC là tam giác đều cạnh a, cạnh SA=a3, hai mặt bên (SAB) và (SAC) cùng vuông góc với mặt phẳng (ABC) (tham khảo hình bên).

Cho khối chóp có đáy là tam giác đều cạnh , cạnh , hai mặt bên và cùng vuông góc với mặt phẳng (tham khảo hình bên).Tính thể tích V của khối hình chóp đã cho. (ảnh 1)

Tính thể tích V của khối hình chóp đã cho.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B.

Cho khối chóp có đáy là tam giác đều cạnh , cạnh , hai mặt bên và cùng vuông góc với mặt phẳng (tham khảo hình bên).Tính thể tích V của khối hình chóp đã cho. (ảnh 2)

ΔABC đều cạnh \(a \Rightarrow AB = AC = a\) và A^=600

Diện tích ΔABC là S=12.AB.AC.sinA=12.a.a.sin600=a234.

Hai mặt bên (SAB) và (SAC) cùng vuông góc với mặt phẳng (ABC)SA(ABC)

Cho khối chóp có đáy là tam giác đều cạnh , cạnh , hai mặt bên và cùng vuông góc với mặt phẳng (tham khảo hình bên).Tính thể tích V của khối hình chóp đã cho. (ảnh 3)Chiều cao của hình chóp là h=SA=a3

Vậy thể tích hình chóp SABC là V=13Sh=13.a234.a3=a34

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A.

Xét \(f'\left( x \right) = 0 \Leftrightarrow {\left( {x - 1} \right)^2}\left( {3 - x} \right)\left( {{x^2} - x - 1} \right) = 0\)

[(x1)2=0x=13x=0x=3x2x1=0x=1±52

Ta có bảng xét dấu:

Cho hàm số có đạo hàm là . Hỏi hàm số có bao nhiêu điểm cực tiểu? (ảnh 1)
Vậy hàm số có một điểm cực tiểu.

Lời giải

Chọn A

Trên khoảng (0;1) đồ thị của hàm số đi xuống từ trái sang phải nên hàm số nghịch biến.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP