Câu hỏi:

24/04/2022 3,693 Lưu

Cho hàm số bậc ba y=f(x) có đồ thị như sau:

Cho hàm số bậc ba có đồ thị như sau: Hỏi hàm số có bao nhiêu điểm cực trị? (ảnh 1)

Hỏi hàm số g(x)=2[f(x)]312[f(x)]212f(x)+3 có bao nhiêu điểm cực trị?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A.

Ta có g'(x)=6[f(x)]2f'(x)[f(x)]f'(x)12f'(x)=f'(x)[6[f(x)]2f(x)12]

\( \Rightarrow g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}f'\left( x \right) = 0\\6{\left[ {f\left( x \right)} \right]^2} - f\left( x \right) - 12 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}f'\left( x \right) = 0\\f\left( x \right) = \frac{{ - 4}}{3}\\f\left( x \right) = \frac{3}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = a < - 2\\x = b \in \left( { - 2; - 1} \right)\\x = c \in \left( { - 1;0} \right)\\x = d \in \left( {1;2} \right)\end{array} \right.\)

Vậy hàm g(x) có 6 điểm cực trị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A.

Xét \(f'\left( x \right) = 0 \Leftrightarrow {\left( {x - 1} \right)^2}\left( {3 - x} \right)\left( {{x^2} - x - 1} \right) = 0\)

[(x1)2=0x=13x=0x=3x2x1=0x=1±52

Ta có bảng xét dấu:

Cho hàm số có đạo hàm là . Hỏi hàm số có bao nhiêu điểm cực tiểu? (ảnh 1)
Vậy hàm số có một điểm cực tiểu.

Lời giải

Chọn A

Trên khoảng (0;1) đồ thị của hàm số đi xuống từ trái sang phải nên hàm số nghịch biến.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP