Câu hỏi:

24/04/2022 657 Lưu

Cho hình lăng trụ đứng ABC.A'B'C' có BAC^=1200, BC=AA'=a. Gọi M là trung điểm của CC'. Tính khoảng cách giứa hai đường thẳng BM và AB', biết rằng chúng vuông góc với nhau.

A. a32

B. a36

C. a510

D. a55

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C.

Cho hình lăng trụ đứng có , . Gọi Mlà trung điểm của . Tính khoảng cách giứa hai đường thẳng và , biết rằng chúng vuông góc với nhau. (ảnh 7)

Gọi \(I\) là hình chiếu của A trên BC, ta có:

{AIBCAIBB'AI(BCC'B')AIBM (1).

Mặt khác, theo giả thiết: A'BBM(2).

Từ (1) và (2) suy ra BM(AB'I)BMB'I.

Gọi E=B'IBM, ta có: IBE^=BB'I^(vì cùng phụ với góc BIB'^).

Khi đó ΔB'BI=ΔBCM(g.c.g)BI=CM=a2Ilà trung điểm cạnh BCΔABC cân tại A.

Gọi F là hình chiếu của E trên \(AB',\) ta có EF là đoạn vuông góc chung của AB'và BM

Suy ra d(BM,AB')=EF.

Ta có: AI=BI.cot600=a2.33=a36;B'I=BB'2+BI2=a2+(a2)2=a52=BM.

IE=BI.sinEBI^=BI.CMBM=a2.a2a52=a510B'E=B'IIE=2a55.

AB'=AI2+B'I'2=(a36)2+(a52)2=2a33.

Mặt khác: ΔB'IA đồng dạng ΔB'FE nên \(\frac{{B'A}}{{B'E}} = \frac{{IA}}{{EF}} \Leftrightarrow EF = \frac{{IAB'E}}{{B'A}} = \frac{{\frac{{a\sqrt 3 }}{6}.\frac{{2a\sqrt 5 }}{5}}}{{\frac{{2a\sqrt 3 }}{3}}} = \frac{{a\sqrt 5 }}{{10}}.\)

Vậy d(BM,AB')=a510.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A.

Xét \(f'\left( x \right) = 0 \Leftrightarrow {\left( {x - 1} \right)^2}\left( {3 - x} \right)\left( {{x^2} - x - 1} \right) = 0\)

[(x1)2=0x=13x=0x=3x2x1=0x=1±52

Ta có bảng xét dấu:

Cho hàm số có đạo hàm là . Hỏi hàm số có bao nhiêu điểm cực tiểu? (ảnh 1)
Vậy hàm số có một điểm cực tiểu.

Lời giải

Chọn A

Trên khoảng (0;1) đồ thị của hàm số đi xuống từ trái sang phải nên hàm số nghịch biến.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP