Câu hỏi:

24/04/2022 1,801

Cho hàm số y=f(x)=ax3+bx2+cx+d. Biết rằng đồ thị hàm số cắt trục Ox tại ba điểm phân biệt có hoành độ là 1,13,12. Hỏi phương trình f[sin(x2)]=f(0) có bao nhiêu nghiệm phân biệt thuộc đoạn [π;π].

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C.

Vì đồ thị hàm số f(x) cắt trục hoành tại 3 điểm phân biệt nên f(x) là hàm số bậc 3

\( \Rightarrow a \ne 0.\)

Từ giả thiết ta có: f(x)=a(x+1)(x13)(x12)f(x)=16a(6x3+x24x+1).

Khi đó: y'=16a(18x2+2x4)=0x=1±7318

Suy ra đồ thị hàm số y=f(x) có hai điểm cực trị nằm khác phía đối với trục tung.

Từ đó ta có phương trình f[sin(x2)]=f(0)[sin(x2)=a1(1;0) (1)sin(x2)=0                 (2)sin(x2)=a2(12;1]  (3)

* Giải (1)

x[π;π] nên x2[0;π]sin(x2)[0;1]. Do đó phương trình \(\left( 1 \right)\) không có nghiệm thỏa mãn đề bài.

(2)x2=kπ.

x2[0;π] nên ta phải có 0kπk,π0k1,kk{0;1}.

Suy ra phương trình (2) có 3 nghiệm thỏa mãn là: x1=π;x2=0;x3=π.

* (3)[x2=arcsina2+k2πx2=πarcsina2+k2π,(với arcsina2[π6;π2]).

x2[0;π] nên ta thấy phương trình (3) có các nghiệm thỏa mãn là x=±arcsina2 và x=±πarcsina2.

Vậy phương trình đã cho có tất cả 7 nghiệm thỏa mãn yêu cầu đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=f(x) có đạo hàm là f'(x)=(x1)2(3x)(x2x1). Hỏi hàm số f(x) có bao nhiêu điểm cực tiểu?

Xem đáp án » 24/04/2022 22,522

Câu 2:

Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Cho hàm số có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây? (ảnh 2)

Xem đáp án » 24/04/2022 17,074

Câu 3:

Có bao nhiêu giá trị nguyên thuộc đoạn [10;10] của m để giá trị lớn nhất của hàm số y=2x+mx+1 trên đoạn [4;2] không lớn hơn 1?

Xem đáp án » 24/04/2022 5,089

Câu 4:

Đường cong sau là đồ thị của một trong các hàm số cho dưới đây. Đó là hàm số nào?

Đường cong sau là đồ thị của một trong các hàm số cho dưới đây. Đó là hàm số nào?  (ảnh 1)

Xem đáp án » 06/04/2022 4,987

Câu 5:

Cho hàm số y=ax3+bx2+cx+d có đồ thị như hình vẽ sau:

Cho hàm số có đồ thị như hình vẽ sau:Hỏi trong các số có bao nhiêu số dương? (ảnh 1)

Hỏi trong các số a,b,c,d có bao nhiêu số dương?

Xem đáp án » 24/04/2022 4,919

Câu 6:

Cho hàm số y=f(x) có bảng biến thiên như sau

Cho hàm số có bảng biến thiên như sauHàm sốđồng biến trên khoảng nào dưới đây? (ảnh 1)

Hàm số y=f(x22) đồng biến trên khoảng nào dưới đây?

Xem đáp án » 24/04/2022 4,644

Câu 7:

Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số y=2x1x1 ?

Xem đáp án » 24/04/2022 3,985

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store