Câu hỏi:

24/04/2022 640 Lưu

Tổng tất cả các giá trị nguyên của m để hàm số \(y = \frac{1}{3}{x^3} - \left( {m - 1} \right){x^2} + x - m\) đồng biến trên tập xác định bằng.

A.3.

B.2.

C.4.

D. 1.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A.

Tập xác định D=.

Ta có y'=x22(m1)x+1, để hàm số đồng biến với \(\forall x \in D\) thì y'0,xΔ'0m22m00m2m nên m={0;1;2}. Vậy đáp án là A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D.

Ta có y'=x22x3(x1)2 suy ra y'=0x22x3=0[x=1x=3.

Xét trên [-2;0] ta có f(2)=73,f(1)=2 và \(f\left( 0 \right) = - 3.\)

Vậy M=max[2;0]f(x)=2 m=min[2;0]f(x)=3, do đó P=M+m=5.

Lời giải

Hướng dẫn gải:

Dựa vào đồ thị hàm số y=f(x) ta có:

f'(x)=00<x<12;f'(x)>0[x>12x<0

Đặt g(x)=f(sinx)g'(x)=cosx.f'(sinx). Ta chỉ xét trên khoảng (0;π).

\(g'\left( x \right) = 0 \Leftrightarrow \cos x.f'\left( {\sin x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\f'\left( {\sin x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\\sin x = 0\\\sin x = \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2}\\x = \frac{\pi }{6}\\x = \frac{{5\pi }}{6}\end{array} \right.\)

Bảng biến thiên:

Cho hàm số có đồ thị như hình vẽHàm số \(f\left( {\sin x} \right)\) nghịch biến trên các khoảng nào sau đây.Hướng dẫn gải: (ảnh 7)
Dựa vào bảng biến thiên suy ra hàm số g(x)=f(sinx) đồng biến trên các khoảng (π6;π2) và (5π6;π).
Đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.Đồ thị hàm số có hai tiệm cận đứng và một đường tiệm cận ngang.

B.Đồ thị hàm số có một đường tiệm cận đứng và một đường tiệm cận ngang.

C.Đồ thị hàm số có hai đường tiệm cận đứng.

D. Đồ thị hàm số có hai đường tiệm cận ngang.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.loga(x+y)=logax+logay

B.loga1x=1logax

C.logaxy=logaxlogay.

D. logbx=logba.logax.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.Hàm số đạt cực trị tại x0 thì f(x0)=0.

B.Hàm số đạt cực đại tại \({x_0}\) thì f(x) đổi dấu khi qua x0.

C.Nếu f'(x0)=0 thì hàm số đạt cực trị tại x0.

D. Nếu hàm số đạt cực trị tại x0 thì f'(x0)=0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP