Câu hỏi:

24/04/2022 356

Hàm số nào dưới đây có đồ thị như hình vẽ bên dưới?

Hàm số nào dưới đây có đồ thị như hình vẽ bên dưới?Hướng dẫn gải: (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Hướng dẫn gải:

Đây không là đồ thị hàm bậc bốn trùng phương nên loại A, C.

Đồ thị hàm số cắt trục tung tại điểm có tung độ âm nên loại đáp án D.

Đáp án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D.

Ta có y'=x22x3(x1)2 suy ra y'=0x22x3=0[x=1x=3.

Xét trên [-2;0] ta có f(2)=73,f(1)=2 và \(f\left( 0 \right) = - 3.\)

Vậy M=max[2;0]f(x)=2 m=min[2;0]f(x)=3, do đó P=M+m=5.

Lời giải

Hướng dẫn gải:

Dựa vào đồ thị hàm số y=f(x) ta có:

f'(x)=00<x<12;f'(x)>0[x>12x<0

Đặt g(x)=f(sinx)g'(x)=cosx.f'(sinx). Ta chỉ xét trên khoảng (0;π).

\(g'\left( x \right) = 0 \Leftrightarrow \cos x.f'\left( {\sin x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\f'\left( {\sin x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\\sin x = 0\\\sin x = \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2}\\x = \frac{\pi }{6}\\x = \frac{{5\pi }}{6}\end{array} \right.\)

Bảng biến thiên:

Cho hàm số có đồ thị như hình vẽHàm số \(f\left( {\sin x} \right)\) nghịch biến trên các khoảng nào sau đây.Hướng dẫn gải: (ảnh 7)
Dựa vào bảng biến thiên suy ra hàm số g(x)=f(sinx) đồng biến trên các khoảng (π6;π2) và (5π6;π).
Đáp án C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP