Câu hỏi:
24/04/2022 262Biết điểm là điểm cực đại của đồ thị hàm số Tính \(f\left( 3 \right).\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \(f'\left( x \right) = 3{x^2} + 2ax + b\)
Điều kiện cần để điểm là điểm cực đại của hàm số f(x) là:
\(\left\{ \begin{array}{l}f'\left( 0 \right) = 0\\f\left( 0 \right) = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 0\\{a^2} = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a = 2\\b = 0\end{array} \right.\\\left\{ \begin{array}{l}a = - 2\\b = 0\end{array} \right.\end{array} \right.\)
Điều kiện đủ.
Trường hợp 1: ta có
Bảng xét dấu
Vậy \(f\left( x \right) = {x^3} - 2{x^2} + 4 \Rightarrow f\left( 3 \right) = 13.\)Nên là điểm cực tiểu của đồ thị hàm số (loại).
Đáp án D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gọi M,m thứ tự là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \frac{{{x^2} + 3}}{{x - 1}}\) trên đoạn [-2;0] Tính P=M+m.
Câu 2:
Cho và và y là hai số dương. Tìm mệnh đề đúng trong các mệnh đề sau:
Câu 3:
Cho hàm số y=f(x) có đồ thị như hình vẽ
Hàm số \(f\left( {\sin x} \right)\) nghịch biến trên các khoảng nào sau đây.
Câu 4:
Cho hàm số y=f(x) là hàm số liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ dưới đây.
Khẳng định nào sau đây là khẳng định đúng?
Câu 5:
Cho hàm số y=f(x) có đạo hàm tại điểm Trong các mệnh đề sau, mệnh đề nào đúng?
Câu 6:
Cho hàm số y=f(x) xác định trên \(\mathbb{R}\backslash \left\{ { - 1} \right\}\) có bảng biến thiên
Chọn khẳng định đúng
Câu 7:
Tìm tất cả các tham số m để đồ thị hàm số \(y = \frac{{\sqrt {x - 1} + 2}}{{\sqrt {{x^2} - 4x + m} }}\) có hai đường tiệm cận đứng.
về câu hỏi!