Câu hỏi:
24/04/2022 1,891Tìm tất cả các tham số m để đồ thị hàm số \(y = \frac{{\sqrt {x - 1} + 2}}{{\sqrt {{x^2} - 4x + m} }}\) có hai đường tiệm cận đứng.
Quảng cáo
Trả lời:
Điều kiện:
Để đồ thị hàm số có hai đường tiệm cận đứng thì phương trình phải có hai nghiệm phân biệt lớn hơn 1.
Ta có:
Để thỏa mãn yêu cầu đề ra thì \(2 - \sqrt {4 - m} >1 \Leftrightarrow 1 >\sqrt {4 - m} \Leftrightarrow 1 >4 - m \Leftrightarrow m >3.\)
Vậy
Đáp án B
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D.
Ta có suy ra
Xét trên [-2;0] ta có và \(f\left( 0 \right) = - 3.\)
Vậy và , do đó
Lời giải
Dựa vào đồ thị hàm số y=f(x) ta có:
Đặt Ta chỉ xét trên khoảng
\(g'\left( x \right) = 0 \Leftrightarrow \cos x.f'\left( {\sin x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\f'\left( {\sin x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\\sin x = 0\\\sin x = \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2}\\x = \frac{\pi }{6}\\x = \frac{{5\pi }}{6}\end{array} \right.\)
Bảng biến thiên:

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.