Câu hỏi:

24/04/2022 1,995

Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Bất phương trình f(x)+x2+3<m có nghiệm đúng x(1;1) khi và chỉ khi

Cho hàm số \(y = f\left( x \right)\) liên tục trên và có đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Bất phương trình có nghiệm đúng khi và chỉ khiHướng dẫn gải: (ảnh 4)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Hướng dẫn gải:

Cho hàm số \(y = f\left( x \right)\) liên tục trên và có đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Bất phương trình có nghiệm đúng khi và chỉ khiHướng dẫn gải: (ảnh 5)

Đặt h(x)=f(x)+x2+3.

Bất phương trình đã cho có nghiệm đúng x(1;1) khi và chỉ khi m>max(1;1)h(x).

Ta có: h'(x)=f'(x)+2x,h'(x)=0f'(x)+2x=0[x=0x=±1.

+) h'(x)>0f'(x)+2x>0f'(x)>2x

+) \(h'\left( x \right) < 0 \Leftrightarrow f'\left( x \right) + 2x < 0 \Leftrightarrow f'\left( x \right) < - 2x\)

Ta có bảng biến thiên

Cho hàm số \(y = f\left( x \right)\) liên tục trên và có đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Bất phương trình có nghiệm đúng khi và chỉ khiHướng dẫn gải: (ảnh 11)

Từ bảng biến thiên suy ra: max(1;1)h(x)=h(0)=f(0)+3.

Vậy m>f(0)+3.

Đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D.

Ta có y'=x22x3(x1)2 suy ra y'=0x22x3=0[x=1x=3.

Xét trên [-2;0] ta có f(2)=73,f(1)=2 và \(f\left( 0 \right) = - 3.\)

Vậy M=max[2;0]f(x)=2 m=min[2;0]f(x)=3, do đó P=M+m=5.

Lời giải

Hướng dẫn gải:

Dựa vào đồ thị hàm số y=f(x) ta có:

f'(x)=00<x<12;f'(x)>0[x>12x<0

Đặt g(x)=f(sinx)g'(x)=cosx.f'(sinx). Ta chỉ xét trên khoảng (0;π).

\(g'\left( x \right) = 0 \Leftrightarrow \cos x.f'\left( {\sin x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\f'\left( {\sin x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\\sin x = 0\\\sin x = \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2}\\x = \frac{\pi }{6}\\x = \frac{{5\pi }}{6}\end{array} \right.\)

Bảng biến thiên:

Cho hàm số có đồ thị như hình vẽHàm số \(f\left( {\sin x} \right)\) nghịch biến trên các khoảng nào sau đây.Hướng dẫn gải: (ảnh 7)
Dựa vào bảng biến thiên suy ra hàm số g(x)=f(sinx) đồng biến trên các khoảng (π6;π2) và (5π6;π).
Đáp án C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP