Câu hỏi:

01/04/2022 273 Lưu

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, hai mặt SAB;SAD cùng vuông góc với mặt phẳng ABCD; góc giữa đường thẳng SC và mặt phẳng ABCD bằng 600. Tính theo a thể tích của khối chóp S.ABCD.

Cho hình chóp SABCD có đáy là hình vuông cạnh a   (ảnh 1)

A.3a3 

B. a369

C. 32a3

D. a363

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có AC=a2

(SAB)(ABCD);(SAD)(ABCD) nên SAABCD

Suy ra góc giữa đường thẳng SC và mặt phẳng ABCD là góc giữa SC và AC.

Suy ra SCA^=600 SA=a2.tan600=a6

Vậy thể tích khối chóp là V=13.a2.a6=a363

Chọn đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: 024f(x)3dx=402f(x)dx302dx=6.
Chọn đáp án B

Lời giải

Trong hệ tọa độ Oxyz , cho điểm A(2;1;3) , mặt phẳng  (ảnh 1)

+ Mặt cầu (S) có tâm I3;2;5 và bán kính R=6.

Ta có: A(α), IA=6<R nên (S)(α)=(C) và A nằm trong mặt cầu (S).

Suy ra: Mọi đường thẳng Δ đi qua A, nằm trong mặt phẳng (α) đều cắt (S) tại hai điểm M,N. (  cũng chính là giao điểm của Δ và ).

+ Vì d(I,Δ)IA nên ta có: MN=2R2d2(I,Δ)2R2IA2=230.

Dấu "=" xảy ra khi A là điểm chính giữa dây cung MN.

Vậy độ dài đoạn MN nhỏ nhất là bằng 230.

Chọn đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. z¯=43i

B. z¯=45i

C. z¯=4+3i

D. z¯=5i

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP