Câu hỏi:

25/04/2022 8,674 Lưu

Cho phương trình log12(2xm)+log2(3x)=0, m là tham số. Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình có nghiệm?

A. 5

B. 4

C. 6

D. 7

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

ĐKXĐ: {2xm>03x>0{2xm>0x<3.

Ta có:

log12(2xm)+log2(3x)=0log2(2xm)+log2(3x)=0

log2(2xm)=log2(3x)2xm=3x3x=m+3

Để phương trình có nghiệm thì m+3<9m<6.

Kết hợp điều kiện m là số nguyên dương ta có m{1;2;3;4;5}.

Vậy có 5 giá trị của tham số m thỏa mãn yêu cầu bài toán.

Đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 (VD): Cho hình lăng trụ đều ABC.A’B’C’, tất cả các cạnh có độ dài bằng a. Gọi M là trung điểm của cạnh BC. Tính khoảng cách giữa hai đường thẳng AM và BC’.  (ảnh 4)

Gọi N là trung điểm của CC’ MN là đường trung bình của tam giác BCC’.

\[ \Rightarrow MN//BC' \Rightarrow BC'//\left( {AMN} \right) \supset AM\].

Khi đó ta có d(AM;BC')=d(BC';(AMN))=d(B;(AMN)).

Ta có: BC(AMN)=Md(B;(AMN))d(C;(AMN))=BMCM=1d(B;(AMN))=d(C;(AMN)).

Trong (BCC’B’) kẻ CHMN(HMN) ta có:

{AMCMAMCNAM(BCC'B')AMCH

{CHAMCHMNCH(AMN)d(C;(AMN))=CH

d(AM;BC')=CH.

Áp dụng hệ thức lượng trong tam giác vuông CMN có: CH=CM.CNCM2+CN2=a2.a2a24+a24=a24.

Vậy d(AM;BC')=a24.

Đáp án D.

Lời giải

Ta có: sin(cosx)=0cosx=kπ(k).

1cosx1x nên 1kπ1,kk=0.

Khi đó ta có cosx=0x=π2+lπ(l).

Xét x[1;2021] ta có 1π2+lπ2021;ll{0;1;2;...;642}.

Vậy phương trình đã cho có 643 nghiệm thỏa mãn.

Đáp án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.3(2b3a)

B.3(2a3b)

C.3(2b3b)

D.3(2a3b)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP