Câu hỏi:
25/04/2022 2,620Cho tứ diện ABCD có ABC, ABD, ACD là các tam giác vuông tương ứng tại A, B, C. Góc giữa AD và (ABC) bằng , và khoảng cách giữa AD và BC bằng a. Tính thể tích khối tứ diện ABCD.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Dựng hình chữ nhật ABHC ta có:
⇒ AH là hình chiếu của AD lên (ABC) .
Ta có: .
là hình vuông (Tứ giác có hai đường chéo vuông góc).
Gọi , trong (ADH) kẻ ta có:
.
Xét tam giác OKA vuông tại K có nên tam giác OAK vuông cân tại K \[ \Rightarrow OA = OK\sqrt 2 = a\sqrt 2 \].
.
Lại có tam giác AHD vuông cân tại H nên .
Ta có: .
Vậy .
Đáp án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
Cho phương trình , m là tham số. Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình có nghiệm?
Câu 6:
Cho hình lăng trụ đều ABC.A’B’C’, tất cả các cạnh có độ dài bằng a. Gọi M là trung điểm của cạnh BC. Tính khoảng cách giữa hai đường thẳng AM và BC’.
về câu hỏi!