Câu hỏi:

02/04/2022 670 Lưu

Cho số phức z có phần thực là số nguyên và thỏa mãn z2z¯=7+3i+z. Tính mô-đun của số phức w=1z+z2

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi z=a+bi; a,b;i2=1; a là số nguyên. Theo đề ta có

|z|2z¯=7+3i+z

a2+b22a+2bi=7+3i+a+bi

(a2+b22a)+2bi=(7+a)+(3+b)i

a2+b22a=7+a2b=3+ba2+9=3a7b=3a738a242a+40=0b=3

a73a=4a=54b=3

Khi đó z=4+3i

Vậy w=1z+z2=4+21iw=457.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có: 12x>82x>23x>3x<3.

Vậy bất phương trình có tập nghiệm là S=(3;+).
Chọn đáp án A

Lời giải

Ta có: 12f(x)dx=F2F1.

122x+2=2lnx+212=2ln42ln1=2ln4.

F2F1=2ln4.

 F2=2ln4 (do F1=0).

Chọn đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP