Câu hỏi:

02/04/2022 457

Có 13 học sinh của một trường THPT đạt danh hiệu học sinh xuất sắc trong đó khối 12 có 8 học sinh nam và 3 học sinh nữ, khối 11 có 2 học sinh nam. Chọn ngẫu nhiên  học sinh bất kỳ để trao thưởng, tính xác suất để 3 học sinh được chọn có cả nam và nữ đồng thời có cả khối 11 và khối 12.

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Không gian mẫu là số cách chọn ngẫu nhiên 3 học sinh từ 13 học sinh.

Suy ra số phần tử của không gian mẫu là Ω=C133=286.

Gọi A là biến cố "3 học sinh được chọn có cả nam và nữ đồng thời có cả khối 11 và khối 12. Ta có các trường hợp thuận lợi cho biến cố A là:

● TH1: Chọn 1 học sinh khối 11; 1 học sinh nam khối 12 và 1 học sinh nữ khối 12 nên có C21C81C31=48 cách.

● TH2: Chọn 1 học sinh khối 11; 2 học sinh nữ khối 12 có C21C32=6 cách.

● TH3: Chọn 2 học sinh khối 11; 1 học sinh nữ khối 12 có C22C31=3 cách.

Suy ra số phần tử của biến cố A ΩA=48+6+3=57.

Vậy xác suất cần tính PA=ΩAΩ=57286.

Chọn đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

 Tìm tập nghiệm S của bất phương trình 12x>8.

Xem đáp án » 02/04/2022 9,142

Câu 2:

Cho F(x) là một nguyên hàm của f(x)=2x+2. BiếtF1=0. Tính F2 kết quả là.

Xem đáp án » 03/04/2022 663

Câu 3:

Cho hàm số fx nhận giá trị dương và thỏa mãn f0=1, f'x3=exfx2,x.Tính A. f3

Xem đáp án » 03/04/2022 612

Câu 4:

Cho số phức z có phần thực là số nguyên và thỏa mãn z2z¯=7+3i+z. Tính mô-đun của số phức w=1z+z2

Xem đáp án » 02/04/2022 578

Câu 5:

Giá trị nhỏ nhất của hàm sốy=x1+2x+2019 bằng

Xem đáp án » 02/04/2022 554

Câu 6:

Biết rằng đồ thị cho ở hình vẽ dưới đây là đồ thị của một trong 4 hàm số cho trong 4 phương án A,B,C,D. Đó là đồ thị hàm số nào?

Biết rằng đồ thị cho ở hình vẽ dưới đây là đồ thị của một trong 4 hàm số (ảnh 1)

Xem đáp án » 02/04/2022 526

Câu 7:

Cho tập A có 26 phần tử. HỏiA có bao nhiêu tập con gồm 6 phần tử?

Xem đáp án » 02/04/2022 476

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store