Câu hỏi:

06/04/2022 761 Lưu

Phát biểu nào sau đây với con lắc đơn dao động điều hòa là không đúng ?

A.Động năng tỉ lệ với bình phương tốc độ của vật.

B.Thế năng tỉ lệ với bình phương tốc độ góc của vật.

C.Thế năng tỉ lệ với bình phương li độ góc của vật

D.Cơ năng không đổi theo thời gian và tỉ lệ với bình phương biên độ góc.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Thế năng:

\[{W_t} = mg{\rm{z}} = mgl(1 - c{\rm{os}}\alpha )\]

(Chọn mốc thế năng khi vật ở vị trí cân bằng)

Động năng: \[{W_d} = \frac{1}{2}m{v^2}\]

Cơ năng: \[W = \frac{1}{2}m{\omega ^2}{S_0}^2 = \frac{1}{2}mgl{\alpha _0}^2\]

Ta suy ra:

A, C, D - đúng

B - sai

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+ Chu kì dao động của con lắc đơn: \[T = 2\pi \sqrt {\frac{l}{g}} = 2\pi \sqrt {\frac{{0,81}}{{9,87}}} = 1,8s\]

+ \[{\rm{\Delta }}t = 1,2s = \frac{{2T}}{3} = \frac{T}{2} + \frac{T}{6}\]

Vẽ trên trục ta được:

Một con lắc đơn có chiều dài 81 cm đang dao động điều hòa với biên độ góc 80tại nơi có \[g = 9,87m/{s^2}({\pi ^2} \approx 9,87)\] Chọn t = 0 khi vật nhỏ của con lắc ở vị (ảnh 1)

⇒ Quãng đường vật đi được trong khoảng thời gian từ t = 0 đến t = 1,2s là:

\[S = 2{S_0} + \frac{{{S_0}}}{2} = \frac{{5{S_0}}}{2}\]

Lại có: \[{S_0} = l{\alpha _0} = 0,81.\frac{{8\pi }}{{180}}\]

Ta suy ra: \[S = 0,28274m = 28,3cm\]

Đáp án cần chọn là: D

Lời giải

Khi chiều dài con lắc là l, chu kì của con lắc là:

\[T = \frac{{{\rm{\Delta }}t}}{{10}} = 2\pi \sqrt {\frac{l}{g}} \Rightarrow l = \frac{{{g^2}.{\rm{\Delta }}t}}{{{{10}^2}.4{\pi ^2}}}\,\,\left( 1 \right)\]

Khi chiều dài của con lắc tăng thêm 36 cm, chu kì của con lắc là:

\[T' = \frac{{{\rm{\Delta }}t}}{8} = 2\pi \sqrt {\frac{{l + 0,36}}{g}} \Rightarrow l + 0,36 = \frac{{{g^2}.{\rm{\Delta }}t}}{{{8^2}.4{\pi ^2}}}\left( 2 \right)\]

Từ (1) và (2) ta có:

\[\frac{l}{{l + 0,36}} = \frac{{{8^2}}}{{{{10}^2}}} \Rightarrow l = 0,64\,\,\left( m \right) = 64\,\,\left( {cm} \right)\]

Đáp án cần chọn là: C