Câu hỏi:

09/04/2022 1,118 Lưu

Ông A vay ngắn hạn ngân hàng 500 triệu đồng, với lãi suất 12%/năm. Ông muốn hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết nợ sau đúng 3 tháng kể từ ngày vay. Hỏi theo cách đó, số tiền m mà ông A sẽ phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng, lãi suất ngân hàng không thay đổi trong thời gian ông A hoàn nợ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Khi vay một số tiền P với lãi suất r/ tháng thì số tiền m phải trả mỗi tháng để sau k tháng hết nợ được tính theo công thức: m=rP.1+rk1+rk1

Áp dụng với P = 500 triệu, r = 1%, k =3 ta có m=1%.500.1+1%31+1%31=5.1,0131,0131 (triệu đồng)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Số phần tử của không gian mẫu là Ω=6.6=36

Gọi A là biến cố “Ít nhất một lần xuất hiện mặt sáu chấm”.

Để tìm số phần tử của biến cố A, ta đi tìm số phần tử của biến cố đối A¯ là “Không xuất hiện mặt sáu chấm”ΩA¯=5.5=25

Vậy xác suất cần tính PA=1PA¯=1136

Câu 2

Lời giải

Đáp án B

Cách 1: Ta có f'x=3x24x4f'x=0x=21;3x=231;3

f1=4f2=7f3=2max1;3fx=2

Cách 2: Sử dụng chức năng MODE7 và nhập hàm fX=X32X24X+1 với thiết lập Start 1, End 3, Step 0,2

Quan sát bảng giá trị F(X) ta thấy giá trị lớn nhất F(X) bằng 2 khi X=3

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP