Câu hỏi:

26/04/2022 241

Diện tích mặt cầu ngoại tiếp một tứ diện đều cạnh \(a\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Diện tích mặt cầu ngoại tiếp một tứ diện đều cạnh \(a\) là (ảnh 1)

Xét tứ diện đều \(S.ABC.\) Gọi \(H\) là trọng tâm của \(\Delta ABC,M\) là trung điểm của \(SA,I\) là giao điểm của \(SH\) và mặt phẳng trung trực của \(SA \Rightarrow I\) là tâm mặt cầu ngoại tiếp tứ diện \(S.ABC.\)

\(AH = \frac{{a\sqrt 3 }}{3} \Rightarrow SH = \sqrt {S{A^2} - A{H^2}} = \frac{{a\sqrt 6 }}{3} \Rightarrow R = SI = \frac{{S{A^2}}}{{2SH}} = \frac{{3a}}{{2\sqrt 6 }}.\)

Vậy diện tích mặt cầu là \(4.\pi .{\left( {\frac{{3a}}{{2\sqrt 6 }}} \right)^2} = \frac{{3\pi {a^2}}}{2}.\)

Đáp án A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ bên.

Cho hàm số \(y = f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ bên.Hàm số \(g\left( x \right) = f\left( {x + 1} \right) + \frac{{{x^3}}}{3} - 3x\) nghịch biến t (ảnh 1)

Hàm số \(g\left( x \right) = f\left( {x + 1} \right) + \frac{{{x^3}}}{3} - 3x\) nghịch biến trên khoảng nào dưới đây?

Xem đáp án » 26/04/2022 10,436

Câu 2:

Đồ thị của hai hàm số \(y = 4{x^4} - 2{x^2} + 1\) và \(y = {x^2} + x + 1\) có tất cả bao nhiêu điểm chung?

Xem đáp án » 26/04/2022 4,789

Câu 3:

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Trên các đoạn \(SA,SB,SC,SD\) lấy lần lượt các điểm \(E,F,G,H\) thỏa mãn \(\frac{{SE}}{{SA}} = \frac{{SG}}{{SC}} = \frac{1}{3},\frac{{SF}}{{SB}} = \frac{{SH}}{{SD}} = \frac{2}{3}.\) Tỉ số thể tích khối \[EFGH\] với khối \(S.ABCD\) bằng:

Xem đáp án » 26/04/2022 4,062

Câu 4:

Cho hàm số \(f\left( x \right)\) có bảng xét dấu đạo hàm như hình bên dưới.

Cho hàm số \(f\left( x \right)\) có bảng xét dấu đạo hàm như hình bên dưới.\(x\)\( - \infty \)                    \( - 3\)                     \( - 2\)                   0                   1 (ảnh 1)

Hàm số \(y = f\left( {1 - 2x} \right)\) đồng biến trên khoảng

Xem đáp án » 26/04/2022 3,532

Câu 5:

Tìm tất cả các giá trị của tham số \(m\) sao cho đồ thị hàm số \(y = \frac{{\sqrt {x - 1} + 2021}}{{\sqrt {{x^2} - 2mx + m + 2} }}\) có đúng ba đường tiệm cận.

Xem đáp án » 26/04/2022 3,298

Câu 6:

Nếu \({a^{\frac{{13}}{{17}}}} >{a^{\frac{{15}}{{18}}}}\) và \({\log _b}\left( {\sqrt 2 + \sqrt 5 } \right) >{\log _b}\left( {2 + \sqrt 3 } \right)\) thì

Xem đáp án » 26/04/2022 2,696

Câu 7:

Biết rằng giá trị nhỏ nhất của hàm số \(y = \frac{{mx + 5}}{{x - m}}\) trên đoạn \(\left[ {0;1} \right]\) bằng \( - 7.\) Mệnh đề nào sau đây đúng?

Xem đáp án » 26/04/2022 2,366
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay