Câu hỏi:

26/04/2022 246

Diện tích mặt cầu ngoại tiếp một tứ diện đều cạnh \(a\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Diện tích mặt cầu ngoại tiếp một tứ diện đều cạnh \(a\) là (ảnh 1)

Xét tứ diện đều \(S.ABC.\) Gọi \(H\) là trọng tâm của \(\Delta ABC,M\) là trung điểm của \(SA,I\) là giao điểm của \(SH\) và mặt phẳng trung trực của \(SA \Rightarrow I\) là tâm mặt cầu ngoại tiếp tứ diện \(S.ABC.\)

\(AH = \frac{{a\sqrt 3 }}{3} \Rightarrow SH = \sqrt {S{A^2} - A{H^2}} = \frac{{a\sqrt 6 }}{3} \Rightarrow R = SI = \frac{{S{A^2}}}{{2SH}} = \frac{{3a}}{{2\sqrt 6 }}.\)

Vậy diện tích mặt cầu là \(4.\pi .{\left( {\frac{{3a}}{{2\sqrt 6 }}} \right)^2} = \frac{{3\pi {a^2}}}{2}.\)

Đáp án A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(g'\left( x \right) = f'\left( {x + 1} \right) + {x^2} - 3\)

Cho \(g'\left( x \right) = 0 \Leftrightarrow f'\left( {x + 1} \right) = 3 - {x^2}\)

Đặt \(t = x + 1\)

Suy ra \(f'\left( t \right) = - {t^2} + 2t + 2\)

Gọi \(h\left( t \right) = - {t^2} + 2t + 2 \Rightarrow g'\left( t \right) = f'\left( t \right) - h\left( t \right)\)

Đồ thị \(y = h\left( t \right)\) có đỉnh \(I\left( {1;3} \right);t = 3 \Rightarrow h\left( 3 \right) = - 1;t = 0 \Rightarrow h\left( 0 \right) = 2\)

Sau khi vẽ \(h\left( t \right) = - {t^2} + 2t + 2\) ta được hình vẽ bên

Cho hàm số \(y = f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ bên.Hàm số \(g\left( x \right) = f\left( {x + 1} \right) + \frac{{{x^3}}}{3} - 3x\) nghịch biến t (ảnh 2)

Hàm số nghịch biến khi \(g'\left( t \right) \le 0 \Leftrightarrow f'\left( t \right) - h\left( t \right) \le 0 \Leftrightarrow 0 \le t \le 3\)

Suy ra \(0 \le x + 1 \le 3 \Leftrightarrow - 1 \le x \le 2\)

Vậy hàm số \(y = g\left( x \right)\) nghịch biến trên khoảng \(\left( { - 1;2} \right).\)

Đáp án B

Lời giải

Phương trình hoành độ giao điểm: \(4{x^4} - 2{x^2} + 1 = {x^2} + x + 1 \Leftrightarrow 4{x^4} - 3{x^2} - x = 0\)

\( \Leftrightarrow x\left( {4{x^3} - 3x - 1} \right) = 0 \Leftrightarrow x\left( {x - 1} \right)\left( {4{x^2} + 4x + 1} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x - 1 = 0\\4{x^2} + 4x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = - \frac{1}{2}\end{array} \right.\).

Số điểm chung của hai đồ thị là 3.

Đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hàm số \(f\left( x \right)\) có bảng xét dấu đạo hàm như hình bên dưới.

Cho hàm số \(f\left( x \right)\) có bảng xét dấu đạo hàm như hình bên dưới.\(x\)\( - \infty \)                    \( - 3\)                     \( - 2\)                   0                   1 (ảnh 1)

Hàm số \(y = f\left( {1 - 2x} \right)\) đồng biến trên khoảng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay