Câu hỏi:

26/04/2022 262

Tìm các giá trị thực của tham số \(m\) để phương trình \(\sqrt {2 - x} + \sqrt {1 + x} = \sqrt {m + x - {x^2}} \) có hai nghiệm phân biệt.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(\sqrt {2 - x} + \sqrt {1 + x} = \sqrt {m + x - {x^2}} \left( 1 \right)\)

Điều kiện: \( - 1 \le x \le 2.\)

Phương trình trở thành: \(2 - x + 1 + x + 2\sqrt {2 + x - {x^2}} = m + x - {x^2}.\)

\( \Leftrightarrow 2\sqrt {2 + x - {x^2}} = \left( {2 + x - {x^2}} \right) + m - 5\)

Đặt \(t = \sqrt {2 + x - {x^2}} .\)

Xét hàm số \(f\left( x \right) = 2 + x - {x^2}\) trên \(\left[ { - 1;2} \right].\)

\(f'\left( x \right) = - 2x + 1.\)

\(f'\left( x \right) = 0 \Leftrightarrow x = \frac{1}{2} \Rightarrow y = \frac{9}{4}.\)

Bảng biến thiên:

Tìm các giá trị thực của tham số \(m\)để phương trình \(\sqrt {2 - x}  + \sqrt {1 + x}  = \sqrt {m + x - {x^2}} \) có hai nghiệm phân biệt. (ảnh 1)
Vậy \(t \in \left[ {0;\frac{3}{2}} \right].\)

Phương trình trở thành:

\(m = - {t^2} + 2t + 5\left( 2 \right)\) với \(t \in \left[ {0;\frac{3}{2}} \right].\)

Xét hàm số \(g\left( x \right) = - {t^2} + 2t + 5.\)

\(g'\left( t \right) = - 2t + 2.\)

\(g'\left( t \right) = 0 \Leftrightarrow t = 1 \Rightarrow f\left( 1 \right) = 6.\)

\(g\left( 0 \right) = 5;g\left( {\frac{3}{2}} \right) = \frac{{23}}{4}.\)

Bảng biến thiên:

Tìm các giá trị thực của tham số \(m\)để phương trình \(\sqrt {2 - x}  + \sqrt {1 + x}  = \sqrt {m + x - {x^2}} \) có hai nghiệm phân biệt. (ảnh 2)
Cứ 1 nghiệm \(t \in \left[ {0;\frac{3}{2}} \right)\) thì tồn tại 2 nghiệm \(x \in \left[ { - 1;2} \right].\)

Vậy để phương trình \(\left( 1 \right)\) có 2 nghiệm phân biệt \( \Leftrightarrow \)phương trình \(\left( 2 \right)\) có 1 nghiệm \(t \in \left[ {0;\frac{3}{2}} \right).\)

Dựa vào bảng biến thiên ta có \(m \in \left[ {5;\frac{{23}}{4}} \right) \cup \left\{ 6 \right\}.\)

Đáp án B

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(g'\left( x \right) = f'\left( {x + 1} \right) + {x^2} - 3\)

Cho \(g'\left( x \right) = 0 \Leftrightarrow f'\left( {x + 1} \right) = 3 - {x^2}\)

Đặt \(t = x + 1\)

Suy ra \(f'\left( t \right) = - {t^2} + 2t + 2\)

Gọi \(h\left( t \right) = - {t^2} + 2t + 2 \Rightarrow g'\left( t \right) = f'\left( t \right) - h\left( t \right)\)

Đồ thị \(y = h\left( t \right)\) có đỉnh \(I\left( {1;3} \right);t = 3 \Rightarrow h\left( 3 \right) = - 1;t = 0 \Rightarrow h\left( 0 \right) = 2\)

Sau khi vẽ \(h\left( t \right) = - {t^2} + 2t + 2\) ta được hình vẽ bên

Cho hàm số \(y = f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ bên.Hàm số \(g\left( x \right) = f\left( {x + 1} \right) + \frac{{{x^3}}}{3} - 3x\) nghịch biến t (ảnh 2)

Hàm số nghịch biến khi \(g'\left( t \right) \le 0 \Leftrightarrow f'\left( t \right) - h\left( t \right) \le 0 \Leftrightarrow 0 \le t \le 3\)

Suy ra \(0 \le x + 1 \le 3 \Leftrightarrow - 1 \le x \le 2\)

Vậy hàm số \(y = g\left( x \right)\) nghịch biến trên khoảng \(\left( { - 1;2} \right).\)

Đáp án B

Lời giải

Phương trình hoành độ giao điểm: \(4{x^4} - 2{x^2} + 1 = {x^2} + x + 1 \Leftrightarrow 4{x^4} - 3{x^2} - x = 0\)

\( \Leftrightarrow x\left( {4{x^3} - 3x - 1} \right) = 0 \Leftrightarrow x\left( {x - 1} \right)\left( {4{x^2} + 4x + 1} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x - 1 = 0\\4{x^2} + 4x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = - \frac{1}{2}\end{array} \right.\).

Số điểm chung của hai đồ thị là 3.

Đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hàm số \(f\left( x \right)\) có bảng xét dấu đạo hàm như hình bên dưới.

Cho hàm số \(f\left( x \right)\) có bảng xét dấu đạo hàm như hình bên dưới.\(x\)\( - \infty \)                    \( - 3\)                     \( - 2\)                   0                   1 (ảnh 1)

Hàm số \(y = f\left( {1 - 2x} \right)\) đồng biến trên khoảng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay