Câu hỏi:

26/04/2022 669

Cho hàm số \(f\left( x \right) = {x^3} + m{x^2} + nx - 1\) với \(m,n\) là các tham số thực thỏa mãn \(m + n >0\) và \(7 + 2\left( {2m + n} \right) < 0.\) Tìm số điểm cực trị của hàm số \(y = \left| {f\left( {\left| x \right|} \right)} \right|.\)</>

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả thiết \(\left\{ \begin{array}{l}f\left( x \right) = {x^3} + m{x^2} + nx - 1\\m + n >0\\7 + 2\left( {2m + n} \right) < 0\end{array} \right.\)

Suy ra \(\left\{ \begin{array}{l}f\left( 0 \right) = - 2\\f\left( 1 \right) = m + n >0\\f\left( 2 \right) = 7 + 2\left( {2m + n} \right) < 0\\\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \end{array} \right.\)

\( \Rightarrow \left\{ \begin{array}{l}f\left( 0 \right).f\left( 1 \right) < 0\\f\left( 1 \right).f\left( 2 \right) < 0\\f\left( 2 \right) < 0\\\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \end{array} \right.\) (với lại \(f\left( x \right)\) liên tục trên \(\mathbb{R})\)

\( \Rightarrow f\left( x \right) = 0\) có 3 nghiệm lần lượt là \({x_1} \in \left( {0;1} \right),{x_2} \in \left( {1;2} \right),{x_3} \in \left( {2; + \infty } \right)\)

(do \(f\left( x \right)\) là đa thức bậc ba nên có tối đa 3 nghiệm.)

Như vậy đồ thị của hàm số \(y = f\left( x \right)\) có 2 điểm cực trị đều nằm bên phải trục tung.

Ta phác họa đồ thị \(y = f\left( x \right)\) như sau

Cho hàm số \(f\left( x \right) = {x^3} + m{x^2} + nx - 1\) với \(m,n\) là các tham số thực thỏa mãn \(m + n >0\) và \(7 + 2\left( {2m + n} \right) < 0.\) Tìm số điểm cực trị của hàm số \(y =  (ảnh 1)

Từ đó suy ra đồ thị \(y = f\left( {\left| x \right|} \right)\) như hình bên dưới

Cho hàm số \(f\left( x \right) = {x^3} + m{x^2} + nx - 1\) với \(m,n\) là các tham số thực thỏa mãn \(m + n >0\) và \(7 + 2\left( {2m + n} \right) < 0.\) Tìm số điểm cực trị của hàm số \(y =  (ảnh 2)

Cuối cùng, đồ thị của hàm số \(y = \left| {f\left( {\left| x \right|} \right)} \right|\) như sau

Cho hàm số \(f\left( x \right) = {x^3} + m{x^2} + nx - 1\) với \(m,n\) là các tham số thực thỏa mãn \(m + n >0\) và \(7 + 2\left( {2m + n} \right) < 0.\) Tìm số điểm cực trị của hàm số \(y =  (ảnh 3)

Kết luận, đồ thị hàm số \(y = \left| {f\left( {\left| x \right|} \right)} \right|\) có 11 điểm cực trị.

Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ bên.

Cho hàm số \(y = f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ bên.Hàm số \(g\left( x \right) = f\left( {x + 1} \right) + \frac{{{x^3}}}{3} - 3x\) nghịch biến t (ảnh 1)

Hàm số \(g\left( x \right) = f\left( {x + 1} \right) + \frac{{{x^3}}}{3} - 3x\) nghịch biến trên khoảng nào dưới đây?

Xem đáp án » 26/04/2022 9,694

Câu 2:

Đồ thị của hai hàm số \(y = 4{x^4} - 2{x^2} + 1\) và \(y = {x^2} + x + 1\) có tất cả bao nhiêu điểm chung?

Xem đáp án » 26/04/2022 4,540

Câu 3:

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Trên các đoạn \(SA,SB,SC,SD\) lấy lần lượt các điểm \(E,F,G,H\) thỏa mãn \(\frac{{SE}}{{SA}} = \frac{{SG}}{{SC}} = \frac{1}{3},\frac{{SF}}{{SB}} = \frac{{SH}}{{SD}} = \frac{2}{3}.\) Tỉ số thể tích khối \[EFGH\] với khối \(S.ABCD\) bằng:

Xem đáp án » 26/04/2022 3,324

Câu 4:

Tìm tất cả các giá trị của tham số \(m\) sao cho đồ thị hàm số \(y = \frac{{\sqrt {x - 1} + 2021}}{{\sqrt {{x^2} - 2mx + m + 2} }}\) có đúng ba đường tiệm cận.

Xem đáp án » 26/04/2022 3,135

Câu 5:

Cho hàm số \(f\left( x \right)\) có bảng xét dấu đạo hàm như hình bên dưới.

Cho hàm số \(f\left( x \right)\) có bảng xét dấu đạo hàm như hình bên dưới.\(x\)\( - \infty \)                    \( - 3\)                     \( - 2\)                   0                   1 (ảnh 1)

Hàm số \(y = f\left( {1 - 2x} \right)\) đồng biến trên khoảng

Xem đáp án » 26/04/2022 3,065

Câu 6:

Nếu \({a^{\frac{{13}}{{17}}}} >{a^{\frac{{15}}{{18}}}}\) và \({\log _b}\left( {\sqrt 2 + \sqrt 5 } \right) >{\log _b}\left( {2 + \sqrt 3 } \right)\) thì

Xem đáp án » 26/04/2022 2,217

Câu 7:

Cho khối chóp \(S.ABC\) có đáy là tam giác vuông cân tại \(B,SA\) vuông góc với đáy và \(SA = AB = 6a.\) Tính thể tích khối chóp \(S.ABC\).

Xem đáp án » 26/04/2022 2,172

Bình luận


Bình luận