Câu hỏi:

29/04/2022 3,070

Cho hàm số \[y = {x^3} - m{x^2} - {m^2}x + 8.\] Có bao nhiêu giá trị m nguyên để hàm số có điểm cực tiểu nằm hoàn toàn phía bên trên trục hoành?

Đáp án chính xác

Hot: Hot: 500+ Đề thi thử tốt nghiệp THPT Quốc gia Toán, Văn, Anh, Sử, Địa...., ĐGNL các trường ĐH Quốc Gia Hà Nội, Tp. Hồ Chi Minh file word có đáp án (form 2025).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

- Giải phương trình \[y' = 0\] xác định các giá trị cực trị theo m.

- Chia các TH, tìm các giá trị cực tiểu tương ứng và giải bất phương trình \[{y_{CT}} < 0\].

Giải chi tiết:

Ta có \[y' = 3{x^2} - 2mx - {m^2}\]; \[y' = 0\] có \[\Delta ' = {m^2} + 3{m^2} = 4{m^2} \ge 0{\mkern 1mu} {\mkern 1mu} \forall m\].

Để hàm số có cực tiểu, tức là có 2 điểm cực trị thì phương trình \[y' = 0\] phải có 2 nghiệm phân biệt \[ \Rightarrow m \ne 0\]

Khi đó ta có \[y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{m + 2m}}{3} = m \Rightarrow y = - {m^3} + 8}\\{x = \frac{{m - 2m}}{3} = - \frac{m}{3} \Leftrightarrow y = \frac{{5{m^3}}}{{27}} + 8}\end{array}} \right.\]

Khi đó yêu cầu bài toán \[ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{m >0}\\{{y_{CT}} = - {m^3} + 8 >0 \Leftrightarrow m < 2}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{l}}{m < 0}\\{{y_{CT}} = \frac{{5{m^3}}}{{27}} + 8 >0 \Leftrightarrow m >- \frac{6}{{\sqrt[3]{5}}}}\end{array}} \right.}\end{array}} \right.\]\[ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{0 < m < 2}\\{ - \frac{6}{{\sqrt[3]{5}}} < m < 0}\end{array}} \right.\]

Lại có \[m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 3; - 2; - 1;1} \right\}\]. Vậy có 4 giá trị của mthỏa mãn yêu cầu bài toán.

Đáp án C

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.

Xem đáp án » 29/04/2022 25,848

Câu 2:

Có bao nhiêu giá trị nguyên của m để hàm số \[y = \frac{{mx + 4}}{{x + m}}\] nghịch biến trên khoảng \[\left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]

Xem đáp án » 29/04/2022 17,980

Câu 3:

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\sqrt 3 \], \[SA \bot \left( {ABCD} \right)\] và \[SA = a\sqrt 2 \]. Tính góc giữa SC và \[\left( {ABCD} \right)\].

Xem đáp án » 29/04/2022 17,644

Câu 4:

Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.

Xem đáp án » 29/04/2022 16,444

Câu 5:

Tọa độ tâm đối xứng của đồ thị hàm số \[y = {x^3} - 3x + 2\] là:

Xem đáp án » 29/04/2022 12,795

Câu 6:

Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z + 4 = 0.\] Viết phương trình mặt cầu có tâm thuộc đường thẳng \[\Delta \] và tiếp xúc với cả hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right).\]

Xem đáp án » 29/04/2022 11,361

Câu 7:

Giá trị nhỏ nhất của hàm số \[y = {x^2} + \frac{{16}}{x}\] trên \[\left( {0; + \infty } \right)\] bằng:

Xem đáp án » 29/04/2022 10,724
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua