Câu hỏi:
29/04/2022 3,102Cho hàm số \[y = {x^3} - m{x^2} - {m^2}x + 8.\] Có bao nhiêu giá trị m nguyên để hàm số có điểm cực tiểu nằm hoàn toàn phía bên trên trục hoành?
Quảng cáo
Trả lời:
Phương pháp giải:
- Giải phương trình \[y' = 0\] xác định các giá trị cực trị theo m.
- Chia các TH, tìm các giá trị cực tiểu tương ứng và giải bất phương trình \[{y_{CT}} < 0\].
Giải chi tiết:
Ta có \[y' = 3{x^2} - 2mx - {m^2}\]; \[y' = 0\] có \[\Delta ' = {m^2} + 3{m^2} = 4{m^2} \ge 0{\mkern 1mu} {\mkern 1mu} \forall m\].
Để hàm số có cực tiểu, tức là có 2 điểm cực trị thì phương trình \[y' = 0\] phải có 2 nghiệm phân biệt \[ \Rightarrow m \ne 0\]
Khi đó ta có \[y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{m + 2m}}{3} = m \Rightarrow y = - {m^3} + 8}\\{x = \frac{{m - 2m}}{3} = - \frac{m}{3} \Leftrightarrow y = \frac{{5{m^3}}}{{27}} + 8}\end{array}} \right.\]
Khi đó yêu cầu bài toán \[ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{m >0}\\{{y_{CT}} = - {m^3} + 8 >0 \Leftrightarrow m < 2}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{l}}{m < 0}\\{{y_{CT}} = \frac{{5{m^3}}}{{27}} + 8 >0 \Leftrightarrow m >- \frac{6}{{\sqrt[3]{5}}}}\end{array}} \right.}\end{array}} \right.\]\[ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{0 < m < 2}\\{ - \frac{6}{{\sqrt[3]{5}}} < m < 0}\end{array}} \right.\]
Lại có \[m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 3; - 2; - 1;1} \right\}\]. Vậy có 4 giá trị của mthỏa mãn yêu cầu bài toán.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 986
Đã bán 1,1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.
Câu 2:
Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\sqrt 3 \], \[SA \bot \left( {ABCD} \right)\] và \[SA = a\sqrt 2 \]. Tính góc giữa SC và \[\left( {ABCD} \right)\].
Câu 3:
Có bao nhiêu giá trị nguyên của m để hàm số \[y = \frac{{mx + 4}}{{x + m}}\] nghịch biến trên khoảng \[\left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]
Câu 4:
Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.
Câu 5:
Tọa độ tâm đối xứng của đồ thị hàm số \[y = {x^3} - 3x + 2\] là:
Câu 6:
Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z + 4 = 0.\] Viết phương trình mặt cầu có tâm thuộc đường thẳng \[\Delta \] và tiếp xúc với cả hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right).\]
Câu 7:
Giá trị nhỏ nhất của hàm số \[y = {x^2} + \frac{{16}}{x}\] trên \[\left( {0; + \infty } \right)\] bằng:
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận