Câu hỏi:
29/04/2022 3,339Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a\sqrt 2 .\] Cạnh bên \[SA\] vuông góc với đáy. Góc giữa \[SC\] và mặt phẳng đáy bằng \[{45^0}.\] Gọi E là trung điểm của \[BC.\] Tính khoảng cách giữa hai đường thẳng \[DE\] và \[SC.\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp giải:
- Xác định mặt phẳng \[\left( P \right)\] chứa \[DE\] và song song với \[SC\], khi đó \[d\left( {DE;SC} \right) = d\left( {SC;\left( P \right)} \right)\].
- Đổi sang \[d\left( {A;\left( P \right)} \right)\]. Dựng khoảng cách.
- Xác định góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng đó.
- Sử dụng hệ thức lượng trong tam giác vuông, định lí Pytago, diện tích … để tính khoảng cách.
Giải chi tiết:
Trong \[\left( {ABCD} \right)\] gọi \[I = AC \cap DE\], trong \[\left( {SAC} \right)\] kẻ \[IG//SC{\mkern 1mu} {\mkern 1mu} \left( {G \in SA} \right)\], khi đó ta có \[DE \subset \left( {GDE} \right)//SC\].
\[ \Rightarrow d\left( {SC;DE} \right) = d\left( {SC;\left( {GDE} \right)} \right) = d\left( {C;\left( {GDE} \right)} \right)\].
Áp dụng định lí Ta-lét ta có: \[\frac{{IC}}{{IA}} = \frac{{EC}}{{AD}} = \frac{1}{2}\], do \[AC \cap \left( {GDE} \right) = I\] nên \[\frac{{d\left( {C;\left( {GDE} \right)} \right)}}{{d\left( {A;\left( {GDE} \right)} \right)}} = \frac{{IC}}{{IA}} = \frac{1}{2}\] \[ \Rightarrow d\left( {C;\left( {GDE} \right)} \right) = \frac{1}{2}d\left( {A;\left( {GDE} \right)} \right)\].
Trong \[\left( {ABCD} \right)\] kẻ \[AH \bot DE{\mkern 1mu} \left( {H \in DE} \right)\], trong \[\left( {GAH} \right)\] kẻ \[AK \bot GH{\mkern 1mu} {\mkern 1mu} \left( {K \in GH} \right)\] ta có:
\[\left\{ {\begin{array}{*{20}{l}}{DE \bot AH}\\{DE \bot AG}\end{array}} \right. \Rightarrow DE \bot \left( {AGH} \right) \Rightarrow DE \bot AK\]
\[\left\{ {\begin{array}{*{20}{l}}{AK \bot GH}\\{AK \bot DE}\end{array}} \right. \Rightarrow AK \bot \left( {GDE} \right) \Rightarrow d\left( {A;\left( {GDE} \right)} \right) = AK\]
Vì \[SA \bot \left( {ABCD} \right)\] nên \[AC\] là hình chiếu vuông góc của \[SC\] lên \[\left( {ABCD} \right)\]
\[ \Rightarrow \angle \left( {SC;\left( {ABCD} \right)} \right) = \angle \left( {SC;AC} \right) = \angle SCA = {45^0}\].
\[ \Rightarrow \Delta SAC\] vuông cân tại A.
Vì \[ABCD\] là hình vuông cạnh \[a\sqrt 2 \] nên .
Áp dụng định lí Ta-lét ta có \[\frac{{AG}}{{AS}} = \frac{{AI}}{{AC}} = \frac{2}{3} \Rightarrow AG = \frac{{4a}}{3}\].
Ta có: \[{S_{\Delta AED}} = \frac{1}{2}d\left( {E;AD} \right).AD = \frac{1}{2}AB.AD = \frac{1}{2}a\sqrt 2 .a\sqrt 2 = {a^2}\].
Áp dụng định lí Pytago trong tam giác vuông \[CDE\] ta có \[DE = \sqrt {C{D^2} + C{E^2}} = \sqrt {2{a^2} + \frac{{{a^2}}}{2}} = \frac{{a\sqrt {10} }}{2}\].
\[ \Rightarrow AH = \frac{{2{S_{AED}}}}{{ED}} = \frac{{2{a^2}}}{{\frac{{a\sqrt {10} }}{2}}} = \frac{{2a\sqrt {10} }}{5}\].
Áp dụng hệ thức lượng trong tam giác vuông \[GAH\] ta có
AK=AG.AH√AG2+AH2=4a3.2a√105
\[AK = \frac{{AG.AH}}{{\sqrt {A{G^2} + A{H^2}} }} = \frac{{\frac{{4a}}{3}.\frac{{2a\sqrt {10} }}{5}}}{{\sqrt {{{\left( {\frac{{4a}}{3}} \right)}^2} + {{\left( {\frac{{2a\sqrt {10} }}{5}} \right)}^2}} }} = \frac{{4a\sqrt {19} }}{{19}}\].
Vậy \[d\left( {DE;SC} \right) = \frac{1}{2} = \frac{{2a\sqrt {19} }}{{19}}\].
Đáp án A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.
Câu 2:
Có bao nhiêu giá trị nguyên của m để hàm số \[y = \frac{{mx + 4}}{{x + m}}\] nghịch biến trên khoảng \[\left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]
Câu 3:
Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.
Câu 4:
Giá trị nhỏ nhất của hàm số \[y = {x^2} + \frac{{16}}{x}\] trên \[\left( {0; + \infty } \right)\] bằng:
Câu 5:
Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z + 4 = 0.\] Viết phương trình mặt cầu có tâm thuộc đường thẳng \[\Delta \] và tiếp xúc với cả hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right).\]
Câu 6:
Tọa độ tâm đối xứng của đồ thị hàm số \[y = {x^3} - 3x + 2\] là:
Câu 7:
Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\sqrt 3 \], \[SA \bot \left( {ABCD} \right)\] và \[SA = a\sqrt 2 \]. Tính góc giữa SC và \[\left( {ABCD} \right)\].
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 1)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Bộ đề thi thử Đại học môn Toán mới nhất cực hay có lời giải (Đề 1)
về câu hỏi!