Câu hỏi:

29/04/2022 7,477

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a\sqrt 2 .\] Cạnh bên \[SA\] vuông góc với đáy. Góc giữa \[SC\] và mặt phẳng đáy bằng \[{45^0}.\] Gọi E là trung điểm của \[BC.\] Tính khoảng cách giữa hai đường thẳng \[DE\] và \[SC.\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

- Xác định mặt phẳng \[\left( P \right)\] chứa \[DE\] và song song với \[SC\], khi đó \[d\left( {DE;SC} \right) = d\left( {SC;\left( P \right)} \right)\].

- Đổi sang \[d\left( {A;\left( P \right)} \right)\]. Dựng khoảng cách.

- Xác định góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng đó.

- Sử dụng hệ thức lượng trong tam giác vuông, định lí Pytago, diện tích … để tính khoảng cách.

Giải chi tiết:

 (VD): Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a\sqrt 2 .\] Cạnh bên \[SA\] vuông góc với đáy. Góc giữa \[SC\] và mặt phẳng đáy bằng \[{45^0}.\] Gọi E là trung điểm của  (ảnh 1)

Trong \[\left( {ABCD} \right)\] gọi \[I = AC \cap DE\], trong \[\left( {SAC} \right)\] kẻ \[IG//SC{\mkern 1mu} {\mkern 1mu} \left( {G \in SA} \right)\], khi đó ta có \[DE \subset \left( {GDE} \right)//SC\].

\[ \Rightarrow d\left( {SC;DE} \right) = d\left( {SC;\left( {GDE} \right)} \right) = d\left( {C;\left( {GDE} \right)} \right)\].

Áp dụng định lí Ta-lét ta có: \[\frac{{IC}}{{IA}} = \frac{{EC}}{{AD}} = \frac{1}{2}\], do \[AC \cap \left( {GDE} \right) = I\] nên \[\frac{{d\left( {C;\left( {GDE} \right)} \right)}}{{d\left( {A;\left( {GDE} \right)} \right)}} = \frac{{IC}}{{IA}} = \frac{1}{2}\] \[ \Rightarrow d\left( {C;\left( {GDE} \right)} \right) = \frac{1}{2}d\left( {A;\left( {GDE} \right)} \right)\].

Trong \[\left( {ABCD} \right)\] kẻ \[AH \bot DE{\mkern 1mu} \left( {H \in DE} \right)\], trong \[\left( {GAH} \right)\] kẻ \[AK \bot GH{\mkern 1mu} {\mkern 1mu} \left( {K \in GH} \right)\] ta có:

\[\left\{ {\begin{array}{*{20}{l}}{DE \bot AH}\\{DE \bot AG}\end{array}} \right. \Rightarrow DE \bot \left( {AGH} \right) \Rightarrow DE \bot AK\]

\[\left\{ {\begin{array}{*{20}{l}}{AK \bot GH}\\{AK \bot DE}\end{array}} \right. \Rightarrow AK \bot \left( {GDE} \right) \Rightarrow d\left( {A;\left( {GDE} \right)} \right) = AK\]

Vì \[SA \bot \left( {ABCD} \right)\] nên \[AC\] là hình chiếu vuông góc của \[SC\] lên \[\left( {ABCD} \right)\]

\[ \Rightarrow \angle \left( {SC;\left( {ABCD} \right)} \right) = \angle \left( {SC;AC} \right) = \angle SCA = {45^0}\].

\[ \Rightarrow \Delta SAC\] vuông cân tại A.

Vì \[ABCD\] là hình vuông cạnh \[a\sqrt 2 \] nên AC=a2.2=2a=SA.

Áp dụng định lí Ta-lét ta có \[\frac{{AG}}{{AS}} = \frac{{AI}}{{AC}} = \frac{2}{3} \Rightarrow AG = \frac{{4a}}{3}\].

Ta có: \[{S_{\Delta AED}} = \frac{1}{2}d\left( {E;AD} \right).AD = \frac{1}{2}AB.AD = \frac{1}{2}a\sqrt 2 .a\sqrt 2 = {a^2}\].

Áp dụng định lí Pytago trong tam giác vuông \[CDE\] ta có \[DE = \sqrt {C{D^2} + C{E^2}} = \sqrt {2{a^2} + \frac{{{a^2}}}{2}} = \frac{{a\sqrt {10} }}{2}\].

\[ \Rightarrow AH = \frac{{2{S_{AED}}}}{{ED}} = \frac{{2{a^2}}}{{\frac{{a\sqrt {10} }}{2}}} = \frac{{2a\sqrt {10} }}{5}\].

Áp dụng hệ thức lượng trong tam giác vuông \[GAH\] ta có

AK=AG.AH√AG2+AH2=4a3.2a√105

\[AK = \frac{{AG.AH}}{{\sqrt {A{G^2} + A{H^2}} }} = \frac{{\frac{{4a}}{3}.\frac{{2a\sqrt {10} }}{5}}}{{\sqrt {{{\left( {\frac{{4a}}{3}} \right)}^2} + {{\left( {\frac{{2a\sqrt {10} }}{5}} \right)}^2}} }} = \frac{{4a\sqrt {19} }}{{19}}\].

Vậy \[d\left( {DE;SC} \right) = \frac{1}{2} = \frac{{2a\sqrt {19} }}{{19}}\].

Đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải:

- Gọi số tự nhiên có 4 chữ số khác nhau là \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \left( {a;b;c;d \in \left\{ {0;1;2;3;4;5} \right\},{\mkern 1mu} {\mkern 1mu} a \ne b \ne c \ne d} \right)\].

- Vì \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 15\] nên \[\left\{ {\begin{array}{*{20}{l}}{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 5 \Rightarrow d \in \left\{ {0;5} \right\}}\\{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3}\end{array}} \right.\].

- Ứng với mõi trường hợp của d, tìm các cặp số \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\] tương ứng.

Giải chi tiết:

Gọi số tự nhiên có 4 chữ số khác nhau là \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \left( {a;b;c;d \in \left\{ {0;1;2;3;4;5} \right\},{\mkern 1mu} {\mkern 1mu} a \ne b \ne c \ne d} \right)\].

Vì \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 15\] nên \[\left\{ {\begin{array}{*{20}{l}}{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 5 \Rightarrow d \in \left\{ {0;5} \right\}}\\{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3}\end{array}} \right.\].

+ TH1: \[d = 0\], số cần tìm có dạng \[\overline {abc0} \] \[ \Rightarrow a + b + c{\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3\].

Các bộ ba chữ số chia hết cho 3 là \[\left\{ {1;2;3} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {1;3;5} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {2;3;4} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {3;4;5} \right\}\].

⇒ có \[4.3! = 24\] cách chọn \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\].

⇒ Có 24 số thỏa mãn.

TH2: \[d = 5\], số cần tìm có dạng \[\overline {abc5} \] \[ \Rightarrow a + b + c + 5{\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3\] \[ \Rightarrow a + b + c\] chia 3 dư 1.

Các bộ ba chữ số chia 3 dư 1 là \[\left\{ {0;1;3} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {1;2;4} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {0;3;4} \right\}\].

⇒ có \[2.2.2! + 3! = 14\] cách chọn \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\].

⇒ Có 14 số thỏa mãn.

Vậy có tất cả \[14 + 14 = 38\] số thỏa mãn.

Đáp án A

Lời giải

Phương pháp giải:

- Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng đó.

- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông để tính góc.

- Sử dụng công thức tính nhanh: Độ dài đường chéo của hình vuông cạnh a là \[a\sqrt 2 \].

Giải chi tiết:

 (TH): Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\sqrt 3 \], \[SA \bot \left( {ABCD} \right)\] và \[SA = a\sqrt 2 \]. Tính góc giữa SC và \[\left( {ABCD} \right)\].  (ảnh 1)

Vì \[SA \bot \left( {ABCD} \right)\] nên \[AC\] là hình chiếu vuông góc của \[SC\] lên \[\left( {ABCD} \right)\].

\[ \Rightarrow \angle \left( {SC;\left( {ABCD} \right)} \right) = \angle \left( {SC;AC} \right) = \angle SCA\].

Vì \[ABCD\] là hình vuông cạnh \[a\sqrt 3 \] nên \[AC = a\sqrt 3 .\sqrt 2 = a\sqrt 6 \].

Xét tam giác vuông \[SAC\] ta có: \[\tan \angle SCA = \frac{{SA}}{{SC}} = \frac{1}{{\sqrt 3 }}\] \[ \Rightarrow \angle SCA = {30^0}\].

Vậy \[\angle \left( {SC;\left( {ABCD} \right)} \right) = {30^0}\].

Đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Tọa độ tâm đối xứng của đồ thị hàm số \[y = {x^3} - 3x + 2\] là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z + 4 = 0.\] Viết phương trình mặt cầu có tâm thuộc đường thẳng \[\Delta \] và tiếp xúc với cả hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay