Câu hỏi:

29/04/2022 1,922 Lưu

Có bao nhiêu giá trị nguyên dương của m không vượt quá 2021 để phương trình \[{4^{x - 1}} - m{.2^{x - 2}} + 1 = 0\] có nghiệm?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

- Đặt ẩn phụ \[t = {2^{x - 2}} >0\].

- Cô lập m, đưa phương trình về dạng \[m = g\left( t \right){\mkern 1mu} {\mkern 1mu} \left( {t >0} \right)\].

- Lập BBT của hàm số \[g\left( t \right)\] khi \[t >0\].

- Dựa vào BBT tìm giá trị của m để phương trình có nghiệm.

Giải chi tiết:

Ta có \[{4^{x - 1}} - m{.2^{x - 2}} + 1 = 0 \Leftrightarrow 4.{\left( {{2^{x - 2}}} \right)^2} - m{.2^{x - 2}} + 1 = 0\].

Đặt \[t = {2^{x - 2}} >0\], phương trình đã cho trở thành \[4{t^2} - mt + 1 = 0 \Leftrightarrow m = \frac{{4{t^2} + 1}}{t} = g\left( t \right){\mkern 1mu} {\mkern 1mu} \left( {t >0} \right)\].

Xét hàm số \[g\left( t \right) = \frac{{4{t^2} + 1}}{t} = 4t + \frac{1}{t}\] có \[g'\left( t \right) = 4 - \frac{1}{{{t^2}}} = 0 \Leftrightarrow t = \frac{1}{2}\].

BBT:

 (TH): Có bao nhiêu giá trị nguyên dương của m không vượt quá 2021 để phương trình \[{4^{x - 1}} - m{.2^{x - 2}} + 1 = 0\] có nghiệm?  (ảnh 1)

Dựa vào BBT ta thấy phương trình có nghiệm \[t >0 \Leftrightarrow m \ge 4\].

Kết hợp điều kiện \[\left\{ {\begin{array}{*{20}{l}}{m \in {\mathbb{Z}^ + }}\\{m \le 2021}\end{array}} \right. \Rightarrow m \in \left\{ {4;5;6;...;2020;2021} \right\}\].

Vậy có 2018 giá trị của mthỏa mãn yêu cầu bài toán.

Đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải:

- Gọi số tự nhiên có 4 chữ số khác nhau là \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \left( {a;b;c;d \in \left\{ {0;1;2;3;4;5} \right\},{\mkern 1mu} {\mkern 1mu} a \ne b \ne c \ne d} \right)\].

- Vì \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 15\] nên \[\left\{ {\begin{array}{*{20}{l}}{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 5 \Rightarrow d \in \left\{ {0;5} \right\}}\\{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3}\end{array}} \right.\].

- Ứng với mõi trường hợp của d, tìm các cặp số \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\] tương ứng.

Giải chi tiết:

Gọi số tự nhiên có 4 chữ số khác nhau là \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \left( {a;b;c;d \in \left\{ {0;1;2;3;4;5} \right\},{\mkern 1mu} {\mkern 1mu} a \ne b \ne c \ne d} \right)\].

Vì \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 15\] nên \[\left\{ {\begin{array}{*{20}{l}}{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 5 \Rightarrow d \in \left\{ {0;5} \right\}}\\{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3}\end{array}} \right.\].

+ TH1: \[d = 0\], số cần tìm có dạng \[\overline {abc0} \] \[ \Rightarrow a + b + c{\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3\].

Các bộ ba chữ số chia hết cho 3 là \[\left\{ {1;2;3} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {1;3;5} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {2;3;4} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {3;4;5} \right\}\].

⇒ có \[4.3! = 24\] cách chọn \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\].

⇒ Có 24 số thỏa mãn.

TH2: \[d = 5\], số cần tìm có dạng \[\overline {abc5} \] \[ \Rightarrow a + b + c + 5{\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3\] \[ \Rightarrow a + b + c\] chia 3 dư 1.

Các bộ ba chữ số chia 3 dư 1 là \[\left\{ {0;1;3} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {1;2;4} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {0;3;4} \right\}\].

⇒ có \[2.2.2! + 3! = 14\] cách chọn \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\].

⇒ Có 14 số thỏa mãn.

Vậy có tất cả \[14 + 14 = 38\] số thỏa mãn.

Đáp án A

Lời giải

Phương pháp giải:

- Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng đó.

- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông để tính góc.

- Sử dụng công thức tính nhanh: Độ dài đường chéo của hình vuông cạnh a là \[a\sqrt 2 \].

Giải chi tiết:

 (TH): Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\sqrt 3 \], \[SA \bot \left( {ABCD} \right)\] và \[SA = a\sqrt 2 \]. Tính góc giữa SC và \[\left( {ABCD} \right)\].  (ảnh 1)

Vì \[SA \bot \left( {ABCD} \right)\] nên \[AC\] là hình chiếu vuông góc của \[SC\] lên \[\left( {ABCD} \right)\].

\[ \Rightarrow \angle \left( {SC;\left( {ABCD} \right)} \right) = \angle \left( {SC;AC} \right) = \angle SCA\].

Vì \[ABCD\] là hình vuông cạnh \[a\sqrt 3 \] nên \[AC = a\sqrt 3 .\sqrt 2 = a\sqrt 6 \].

Xét tam giác vuông \[SAC\] ta có: \[\tan \angle SCA = \frac{{SA}}{{SC}} = \frac{1}{{\sqrt 3 }}\] \[ \Rightarrow \angle SCA = {30^0}\].

Vậy \[\angle \left( {SC;\left( {ABCD} \right)} \right) = {30^0}\].

Đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP