Câu hỏi:

29/04/2022 514

Một lớp học có 30 học sinh nam và 10 học sinh nữ. Giáo viên chủ nhiệm cần chọn một ban cán sự lớp gồm 3 học sinh. Tính xác suất để ban cán sự lớp có cả nam và nữ.

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

- Tính số phần tử của không gian mẫu là \[n\left( \Omega \right)\] là số cách chọn 3 học sinh bất kì.

- Gọi A là biến cố: “Ban sự lớp gồm 3 bạn có cả nam và nữ”. Xét 2 TH để tính số phần tử của biến cố A là \[n\left( A \right)\] .

+ TH1: Chọn 1 nam và 2 nữ

+ TH2: Chọn 2 nam và 1 nữ

- Tính xác suất của biến cố A: \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\].

Giải chi tiết:

Số cách chọn 3 bạn bất kì là \[C_{40}^3\] nên số phần tử của không gian mẫu là \[n\left( \Omega \right) = C_{40}^3\].

Gọi A là biến cố: “Ban sự lớp gồm 3 bạn có cả nam và nữ”.

TH1: Chọn 1 nam và 2 nữ có \[C_{30}^1.C_{10}^2\] cách.

TH2: Chọn 2 nam và 1 nữ có \[C_{30}^2.C_{10}^1\] cách.

\[ \Rightarrow n\left( A \right) = C_{40}^1.C_{10}^2 + C_{40}^2.C_{10}^1\].

Vậy xác suất của biến cố A là \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{30}^1.C_{10}^2 + C_{30}^2.C_{10}^1}}{{C_{40}^3}} = \frac{{15}}{{26}} = \frac{{285}}{{494}}\].

Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.

Xem đáp án » 29/04/2022 17,691

Câu 2:

Có bao nhiêu giá trị nguyên của m để hàm số \[y = \frac{{mx + 4}}{{x + m}}\] nghịch biến trên khoảng \[\left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]

Xem đáp án » 29/04/2022 17,338

Câu 3:

Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.

Xem đáp án » 29/04/2022 15,749

Câu 4:

Tọa độ tâm đối xứng của đồ thị hàm số \[y = {x^3} - 3x + 2\] là:

Xem đáp án » 29/04/2022 10,828

Câu 5:

Giá trị nhỏ nhất của hàm số \[y = {x^2} + \frac{{16}}{x}\] trên \[\left( {0; + \infty } \right)\] bằng:

Xem đáp án » 29/04/2022 10,348

Câu 6:

Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z + 4 = 0.\] Viết phương trình mặt cầu có tâm thuộc đường thẳng \[\Delta \] và tiếp xúc với cả hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right).\]

Xem đáp án » 29/04/2022 10,235

Câu 7:

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\sqrt 3 \], \[SA \bot \left( {ABCD} \right)\] và \[SA = a\sqrt 2 \]. Tính góc giữa SC và \[\left( {ABCD} \right)\].

Xem đáp án » 29/04/2022 9,835

Bình luận


Bình luận