Câu hỏi:

29/04/2022 1,290

Số nghiệm nguyên thuộc đoạn \[\left[ { - 99;{\mkern 1mu} {\mkern 1mu} 100} \right]\] của bất phương trình \[{\left( {\sin \frac{\pi }{5}} \right)^x} \ge {\left( {\cos \frac{{3\pi }}{{10}}} \right)^{\frac{4}{x}}}\] là:

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

- Sử dụng tính chất \[\sin \alpha = \cos \left( {\frac{\pi }{2} - \alpha } \right)\].

- Giải bất phương trình mũ: \[{a^{f\left( x \right)}} \ge {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) \le g\left( x \right){\mkern 1mu} {\mkern 1mu} khi{\mkern 1mu} {\mkern 1mu} 0 < a < 1\].

- Giải bất phương trình đại số tìm x, sau đó kết hợp điều kiện đề bài.

Giải chi tiết:

Vì \[\frac{\pi }{5} + \frac{{3\pi }}{{10}} = \frac{{5\pi }}{{10}} = \frac{\pi }{2}\] nên \[\sin \frac{\pi }{5} = \cos \frac{{3\pi }}{{10}}\].

Khi đó ta có

\[{\left( {\sin \frac{\pi }{5}} \right)^x} \ge {\left( {\cos \frac{{3\pi }}{{10}}} \right)^{\frac{4}{x}}} \Leftrightarrow {\left( {\sin \frac{\pi }{5}} \right)^x} \ge {\left( {\sin \frac{\pi }{5}} \right)^{\frac{4}{x}}} \Leftrightarrow x \le \frac{4}{x}{\mkern 1mu} {\mkern 1mu} \left( {do{\mkern 1mu} {\mkern 1mu} 0 < \sin \frac{\pi }{5} < 1} \right)\]

\[ \Leftrightarrow \frac{{{x^2} - 4}}{x} \le 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x \le - 2}\\{0 < x \le 2}\end{array}} \right.\]

Kết hợp điều kiện \[x \in \left[ { - 99;100} \right]\] ta có \[x \in \left[ { - 99; - 2} \right] \cup \left( {0;2} \right]\].

Vậy phương trình đã cho có 100 nghiệm nguyên thỏa mãn.

Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.

Xem đáp án » 29/04/2022 17,692

Câu 2:

Có bao nhiêu giá trị nguyên của m để hàm số \[y = \frac{{mx + 4}}{{x + m}}\] nghịch biến trên khoảng \[\left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]

Xem đáp án » 29/04/2022 17,338

Câu 3:

Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.

Xem đáp án » 29/04/2022 15,749

Câu 4:

Tọa độ tâm đối xứng của đồ thị hàm số \[y = {x^3} - 3x + 2\] là:

Xem đáp án » 29/04/2022 10,828

Câu 5:

Giá trị nhỏ nhất của hàm số \[y = {x^2} + \frac{{16}}{x}\] trên \[\left( {0; + \infty } \right)\] bằng:

Xem đáp án » 29/04/2022 10,348

Câu 6:

Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z + 4 = 0.\] Viết phương trình mặt cầu có tâm thuộc đường thẳng \[\Delta \] và tiếp xúc với cả hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right).\]

Xem đáp án » 29/04/2022 10,235

Câu 7:

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\sqrt 3 \], \[SA \bot \left( {ABCD} \right)\] và \[SA = a\sqrt 2 \]. Tính góc giữa SC và \[\left( {ABCD} \right)\].

Xem đáp án » 29/04/2022 9,835

Bình luận


Bình luận