Câu hỏi:

29/04/2022 4,660

Có bao nhiêu giá trị nguyên dương của m để hàm số \[y = \frac{8}{3}{x^3} + 2\ln x - mx\] đồng biến trên \[\left( {0;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

- Để hàm số đồng biến trên \[\left( {0;1} \right)\] thì \[y' \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0;1} \right)\].

- Cô lập \[m\], đưa bất phương trình về dạng \[m \le g\left( x \right){\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0;1} \right) \Leftrightarrow m \le \mathop {\min }\limits_{\left[ {0;1} \right]} g\left( x \right)\].

- Lập BBT hàm số \[g\left( x \right)\] trên \[\left( {0;1} \right)\] và kết luận.

Giải chi tiết:

TXĐ: \[D = \left( {0; + \infty } \right)\] nên hàm số xác định trên \[\left( {0;1} \right)\].

Ta có \[y' = 8{x^2} + \frac{2}{x} - m\].

Để hàm số đồng biến trên \[\left( {0;1} \right)\] thì \[y' \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0;1} \right)\] \[ \Leftrightarrow m \le 8{x^2} + \frac{2}{x}{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0;1} \right)\].

Đặt \[g\left( x \right) = 8{x^2} + \frac{2}{x},{\mkern 1mu} {\mkern 1mu} x \in \left( {0;1} \right)\], khi đó ta có \[m \le g\left( x \right){\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0;1} \right) \Leftrightarrow m \le \mathop {\min }\limits_{\left[ {0;1} \right]} g\left( x \right)\].

Ta có \[g'\left( x \right) = 16x - \frac{2}{{{x^2}}} = \frac{{16{x^3} - 2}}{{{x^2}}}\]; \[g'\left( x \right) = 0 \Leftrightarrow x = \frac{1}{2}{\mkern 1mu} {\mkern 1mu} \left( {tm} \right)\].

BBT:

 (VD): Có bao nhiêu giá trị nguyên dương của m để hàm số \[y = \frac{8}{3}{x^3} + 2\ln x - mx\] đồng biến trên \[\left( {0;{\mkern 1mu} {\mkern 1mu} 1} \right)?\] (ảnh 1)

Dựa vào BBT \[ \Rightarrow m \le 6\]. Kết hợp điều kiện \[m \in {\mathbb{Z}^ + } \Rightarrow m \in \left\{ {1;2;3;4;5;6} \right\}\].

Vậy có 6 giá trị của mthỏa mãn yêu cầu bài toán.

Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.

Xem đáp án » 29/04/2022 17,692

Câu 2:

Có bao nhiêu giá trị nguyên của m để hàm số \[y = \frac{{mx + 4}}{{x + m}}\] nghịch biến trên khoảng \[\left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]

Xem đáp án » 29/04/2022 17,338

Câu 3:

Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.

Xem đáp án » 29/04/2022 15,749

Câu 4:

Tọa độ tâm đối xứng của đồ thị hàm số \[y = {x^3} - 3x + 2\] là:

Xem đáp án » 29/04/2022 10,828

Câu 5:

Giá trị nhỏ nhất của hàm số \[y = {x^2} + \frac{{16}}{x}\] trên \[\left( {0; + \infty } \right)\] bằng:

Xem đáp án » 29/04/2022 10,348

Câu 6:

Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z + 4 = 0.\] Viết phương trình mặt cầu có tâm thuộc đường thẳng \[\Delta \] và tiếp xúc với cả hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right).\]

Xem đáp án » 29/04/2022 10,235

Câu 7:

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\sqrt 3 \], \[SA \bot \left( {ABCD} \right)\] và \[SA = a\sqrt 2 \]. Tính góc giữa SC và \[\left( {ABCD} \right)\].

Xem đáp án » 29/04/2022 9,835

Bình luận


Bình luận