Câu hỏi:

29/04/2022 5,562

Có bao nhiêu giá trị nguyên dương của m để hàm số \[y = {x^2} + 8\ln 2x - mx\] đồng biến trên \[\left( {0; + \infty } \right)\]?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

- Để hàm số đồng biến trên \[\left( {0; + \infty } \right)\] thì \[y' \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0; + \infty } \right)\].

- Cô lập m, đưa bất phương trình về dạng \[m \le g\left( x \right){\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0; + \infty } \right) \Leftrightarrow m \le \mathop {\min }\limits_{\left[ {0; + \infty } \right)} g\left( x \right)\].

- Sử dụng BĐT Cô-si tìm \[\mathop {\min }\limits_{\left[ {0; + \infty } \right)} g\left( x \right)\].

Giải chi tiết:

TXĐ: \[D = \left( {0; + \infty } \right)\].

Ta có: \[y' = 2x + 8.\frac{2}{{2x}} - m = 2x + \frac{8}{x} - m\]

Để hàm số đồng biến trên \[\left( {0; + \infty } \right)\] thì \[y' \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0; + \infty } \right)\].

\[ \Leftrightarrow 2x + \frac{8}{x} - m \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0; + \infty } \right)\]

\[ \Leftrightarrow m \le 2x + \frac{8}{x}{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0; + \infty } \right){\mkern 1mu} {\mkern 1mu} \left( * \right)\].

Đặt \[g\left( x \right) = 2x + \frac{8}{x}\], khi đó \[\left( * \right) \Leftrightarrow m \le \mathop {\min }\limits_{\left[ {0; + \infty } \right)} g\left( x \right)\].

Áp dụng BĐT Cô-si ta có: \[2x + \frac{8}{x} \ge 2\sqrt {2x.\frac{8}{x}} = 2.4 = 8\] \[ \Rightarrow \mathop {\min }\limits_{\left[ {0; + \infty } \right)} g\left( x \right) = 8\], dấu “=” xảy ra \[ \Rightarrow 2x = \frac{8}{x} \Leftrightarrow x = 2\].

Từ đó ta suy ra được \[m \le 8\], kết hợp điều kiện \[m \in {\mathbb{Z}^ + } \Rightarrow m \in \left\{ {1;2;3;4;5;6;7;8} \right\}\].

Vậy có 8 giá trị của m thỏa mãn yêu cầu bài toán.

Đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.

Xem đáp án » 29/04/2022 17,196

Câu 2:

Có bao nhiêu giá trị nguyên của m để hàm số \[y = \frac{{mx + 4}}{{x + m}}\] nghịch biến trên khoảng \[\left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]

Xem đáp án » 29/04/2022 17,079

Câu 3:

Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.

Xem đáp án » 29/04/2022 15,426

Câu 4:

Giá trị nhỏ nhất của hàm số \[y = {x^2} + \frac{{16}}{x}\] trên \[\left( {0; + \infty } \right)\] bằng:

Xem đáp án » 29/04/2022 10,076

Câu 5:

Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z + 4 = 0.\] Viết phương trình mặt cầu có tâm thuộc đường thẳng \[\Delta \] và tiếp xúc với cả hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right).\]

Xem đáp án » 29/04/2022 10,067

Câu 6:

Tọa độ tâm đối xứng của đồ thị hàm số \[y = {x^3} - 3x + 2\] là:

Xem đáp án » 29/04/2022 9,708

Câu 7:

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\sqrt 3 \], \[SA \bot \left( {ABCD} \right)\] và \[SA = a\sqrt 2 \]. Tính góc giữa SC và \[\left( {ABCD} \right)\].

Xem đáp án » 29/04/2022 9,119

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store