Câu hỏi:

29/04/2022 5,701

Có bao nhiêu giá trị nguyên dương của m để hàm số \[y = {x^2} + 8\ln 2x - mx\] đồng biến trên \[\left( {0; + \infty } \right)\]?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

- Để hàm số đồng biến trên \[\left( {0; + \infty } \right)\] thì \[y' \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0; + \infty } \right)\].

- Cô lập m, đưa bất phương trình về dạng \[m \le g\left( x \right){\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0; + \infty } \right) \Leftrightarrow m \le \mathop {\min }\limits_{\left[ {0; + \infty } \right)} g\left( x \right)\].

- Sử dụng BĐT Cô-si tìm \[\mathop {\min }\limits_{\left[ {0; + \infty } \right)} g\left( x \right)\].

Giải chi tiết:

TXĐ: \[D = \left( {0; + \infty } \right)\].

Ta có: \[y' = 2x + 8.\frac{2}{{2x}} - m = 2x + \frac{8}{x} - m\]

Để hàm số đồng biến trên \[\left( {0; + \infty } \right)\] thì \[y' \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0; + \infty } \right)\].

\[ \Leftrightarrow 2x + \frac{8}{x} - m \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0; + \infty } \right)\]

\[ \Leftrightarrow m \le 2x + \frac{8}{x}{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0; + \infty } \right){\mkern 1mu} {\mkern 1mu} \left( * \right)\].

Đặt \[g\left( x \right) = 2x + \frac{8}{x}\], khi đó \[\left( * \right) \Leftrightarrow m \le \mathop {\min }\limits_{\left[ {0; + \infty } \right)} g\left( x \right)\].

Áp dụng BĐT Cô-si ta có: \[2x + \frac{8}{x} \ge 2\sqrt {2x.\frac{8}{x}} = 2.4 = 8\] \[ \Rightarrow \mathop {\min }\limits_{\left[ {0; + \infty } \right)} g\left( x \right) = 8\], dấu “=” xảy ra \[ \Rightarrow 2x = \frac{8}{x} \Leftrightarrow x = 2\].

Từ đó ta suy ra được \[m \le 8\], kết hợp điều kiện \[m \in {\mathbb{Z}^ + } \Rightarrow m \in \left\{ {1;2;3;4;5;6;7;8} \right\}\].

Vậy có 8 giá trị của m thỏa mãn yêu cầu bài toán.

Đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.

Xem đáp án » 29/04/2022 17,691

Câu 2:

Có bao nhiêu giá trị nguyên của m để hàm số \[y = \frac{{mx + 4}}{{x + m}}\] nghịch biến trên khoảng \[\left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]

Xem đáp án » 29/04/2022 17,338

Câu 3:

Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.

Xem đáp án » 29/04/2022 15,749

Câu 4:

Tọa độ tâm đối xứng của đồ thị hàm số \[y = {x^3} - 3x + 2\] là:

Xem đáp án » 29/04/2022 10,828

Câu 5:

Giá trị nhỏ nhất của hàm số \[y = {x^2} + \frac{{16}}{x}\] trên \[\left( {0; + \infty } \right)\] bằng:

Xem đáp án » 29/04/2022 10,347

Câu 6:

Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z + 4 = 0.\] Viết phương trình mặt cầu có tâm thuộc đường thẳng \[\Delta \] và tiếp xúc với cả hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right).\]

Xem đáp án » 29/04/2022 10,234

Câu 7:

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\sqrt 3 \], \[SA \bot \left( {ABCD} \right)\] và \[SA = a\sqrt 2 \]. Tính góc giữa SC và \[\left( {ABCD} \right)\].

Xem đáp án » 29/04/2022 9,834

Bình luận


Bình luận