Câu hỏi:

29/04/2022 2,782

Trong không gian với hệ tọa độ Oxyz, cho các điểm \[A\left( {1;0;2} \right)\], \[B\left( { - 1;1;3} \right)\], \[C\left( {3;2;0} \right)\] và mặt phẳng (P):x+2y2z+1=0. Biết rằng điểm \[M\left( {a;b;c} \right)\] thuộc mặt phẳng (P) sao cho biểu thức \[M{A^2} + 2M{B^2} - M{C^2}\] đạt giá trị nhỏ nhất. Khi đó \[a + b + c\] bằng:

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

- Gọi I là điểm thỏa mãn \[\overrightarrow {IA} + 2\overrightarrow {IB} - \overrightarrow {IC} = \vec 0\]. Phân tích \[M{A^2} + 2M{B^2} - M{C^2}\] theo MI.

- Chứng minh đó \[M{A^2} + 2M{B^2} - M{C^2}\] đạt giá trị nhỏ nhất khi và chỉ khi \[MI\] đạt giá trị nhỏ nhất.

- Với I cố định, tìm vị trí của M(P) để \[I{M_{\min }}\].

- Tìm tọa độ điểm I, từ đó dựa vào mối quan hệ giữa IM và \[\left( P \right)\] để tìm tọa độ điểm M.

Giải chi tiết:

Gọi I là điểm thỏa mãn \[\overrightarrow {IA} + 2\overrightarrow {IB} - \overrightarrow {IC} = \vec 0\]. Khi đó ta có:

\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} M{A^2} + 2M{B^2} - M{C^2} = {\overrightarrow {MA} ^2} + 2{\overrightarrow {MB} ^2} - {\overrightarrow {MC} ^2}\]

\[ = {\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)^2} + 2{\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)^2} - {\left( {\overrightarrow {MI} + \overrightarrow {IC} } \right)^2} = 2{\overrightarrow {MI} ^2} + 2\overrightarrow {MI} \left( {\overrightarrow {IA} + 2\overrightarrow {IB} - \overrightarrow {IC} } \right) + {\overrightarrow {IA} ^2} + 2{\overrightarrow {IB} ^2} - {\overrightarrow {IC} ^2}\]

\[ = 2M{I^2} + \left( {I{A^2} + 2I{B^2} - I{C^2}} \right)\]

Vì \[I,{\mkern 1mu} {\mkern 1mu} A,{\mkern 1mu} {\mkern 1mu} B,{\mkern 1mu} {\mkern 1mu} C\] cố định nên \[I{A^2} + 2I{B^2} - I{C^2}\] không đổi, do đó \[M{A^2} + 2M{B^2} - M{C^2}\] đạt giá trị nhỏ nhất khi và chỉ khi \[MI\] đạt giá trị nhỏ nhất.

Mà \[M \in \left( P \right)\] nên \[IM\] đạt giá trị nhỏ nhất khi và chỉ khi M là hình chiếu vuông góc của I lên \[\left( P \right)\] hay \[IM \bot \left( P \right) \Rightarrow \overrightarrow {IM} \] và \[\overrightarrow {{n_P}} = \left( {1;2; - 2} \right)\] cùng phương, với \[\overrightarrow {{n_P}} \] là 1 vtpt của \[\left( P \right)\].

Tìm tọa độ điểm I ta gọi \[I\left( {x;y;z} \right)\]. Ta có:

\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \overrightarrow {IA} + 2\overrightarrow {IB} - \overrightarrow {IC} = \vec 0\]

\[ \Rightarrow \left( {x - 1;y;z - 2} \right) + 2\left( {x + 1;y - 1;z - 3} \right) - \left( {x - 3;y - 2;z} \right) = \vec 0\]

\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x - 1 + 2\left( {x + 1} \right) - \left( {x - 3} \right) = 0}\\{y + 2\left( {y - 1} \right) - \left( {y - 2} \right) = 0}\\{z - 2 + 2\left( {z - 3} \right) - z = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2x + 4 = 0}\\{2y = 0}\\{2z - 8 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = - 2}\\{y = 0}\\{z = 4}\end{array}} \right. \Rightarrow I\left( { - 2;0;4} \right)\]

Khi đó ta có \[\overrightarrow {IM} = \left( {a + 2;b;c - 4} \right)\]

Vì \[\overrightarrow {IM} \] và \[\overrightarrow {{n_P}} = \left( {1;2; - 2} \right)\] cùng phương, lại có \[M \in \left( P \right)\] nên ta có hệ phương trình:

\[\left\{ {\begin{array}{*{20}{l}}{\frac{{a + 2}}{1} = \frac{b}{2} = \frac{{c - 4}}{{ - 2}}}\\{a + 2b - 2c + 1 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2a - b + 4 = 0}\\{b + c - 4 = 0}\\{a + 2b - 2c + 1 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = - 1}\\{b = 2}\\{c = 2}\end{array}} \right.\]

Vậy \[a + b + c = - 1 + 2 + 2 = 3\]

Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.

Xem đáp án » 29/04/2022 17,691

Câu 2:

Có bao nhiêu giá trị nguyên của m để hàm số \[y = \frac{{mx + 4}}{{x + m}}\] nghịch biến trên khoảng \[\left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]

Xem đáp án » 29/04/2022 17,338

Câu 3:

Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.

Xem đáp án » 29/04/2022 15,749

Câu 4:

Tọa độ tâm đối xứng của đồ thị hàm số \[y = {x^3} - 3x + 2\] là:

Xem đáp án » 29/04/2022 10,828

Câu 5:

Giá trị nhỏ nhất của hàm số \[y = {x^2} + \frac{{16}}{x}\] trên \[\left( {0; + \infty } \right)\] bằng:

Xem đáp án » 29/04/2022 10,347

Câu 6:

Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z + 4 = 0.\] Viết phương trình mặt cầu có tâm thuộc đường thẳng \[\Delta \] và tiếp xúc với cả hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right).\]

Xem đáp án » 29/04/2022 10,234

Câu 7:

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\sqrt 3 \], \[SA \bot \left( {ABCD} \right)\] và \[SA = a\sqrt 2 \]. Tính góc giữa SC và \[\left( {ABCD} \right)\].

Xem đáp án » 29/04/2022 9,834

Bình luận


Bình luận