Câu hỏi:
29/04/2022 3,631Trong không gian với hệ tọa độ Oxyz, cho các điểm \[A\left( {1;0;2} \right)\], \[B\left( { - 1;1;3} \right)\], \[C\left( {3;2;0} \right)\] và mặt phẳng . Biết rằng điểm \[M\left( {a;b;c} \right)\] thuộc mặt phẳng (P) sao cho biểu thức \[M{A^2} + 2M{B^2} - M{C^2}\] đạt giá trị nhỏ nhất. Khi đó \[a + b + c\] bằng:
Hot: Hot: 500+ Đề thi thử tốt nghiệp THPT Quốc gia Toán, Văn, Anh, Sử, Địa...., ĐGNL các trường ĐH Quốc Gia Hà Nội, Tp. Hồ Chi Minh file word có đáp án (form 2025).
Quảng cáo
Trả lời:
Phương pháp giải:
- Gọi I là điểm thỏa mãn \[\overrightarrow {IA} + 2\overrightarrow {IB} - \overrightarrow {IC} = \vec 0\]. Phân tích \[M{A^2} + 2M{B^2} - M{C^2}\] theo MI.
- Chứng minh đó \[M{A^2} + 2M{B^2} - M{C^2}\] đạt giá trị nhỏ nhất khi và chỉ khi \[MI\] đạt giá trị nhỏ nhất.
- Với I cố định, tìm vị trí của để \[I{M_{\min }}\].
- Tìm tọa độ điểm I, từ đó dựa vào mối quan hệ giữa IM và \[\left( P \right)\] để tìm tọa độ điểm M.
Giải chi tiết:
Gọi I là điểm thỏa mãn \[\overrightarrow {IA} + 2\overrightarrow {IB} - \overrightarrow {IC} = \vec 0\]. Khi đó ta có:
\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} M{A^2} + 2M{B^2} - M{C^2} = {\overrightarrow {MA} ^2} + 2{\overrightarrow {MB} ^2} - {\overrightarrow {MC} ^2}\]
\[ = {\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)^2} + 2{\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)^2} - {\left( {\overrightarrow {MI} + \overrightarrow {IC} } \right)^2} = 2{\overrightarrow {MI} ^2} + 2\overrightarrow {MI} \left( {\overrightarrow {IA} + 2\overrightarrow {IB} - \overrightarrow {IC} } \right) + {\overrightarrow {IA} ^2} + 2{\overrightarrow {IB} ^2} - {\overrightarrow {IC} ^2}\]
\[ = 2M{I^2} + \left( {I{A^2} + 2I{B^2} - I{C^2}} \right)\]
Vì \[I,{\mkern 1mu} {\mkern 1mu} A,{\mkern 1mu} {\mkern 1mu} B,{\mkern 1mu} {\mkern 1mu} C\] cố định nên \[I{A^2} + 2I{B^2} - I{C^2}\] không đổi, do đó \[M{A^2} + 2M{B^2} - M{C^2}\] đạt giá trị nhỏ nhất khi và chỉ khi \[MI\] đạt giá trị nhỏ nhất.
Mà \[M \in \left( P \right)\] nên \[IM\] đạt giá trị nhỏ nhất khi và chỉ khi M là hình chiếu vuông góc của I lên \[\left( P \right)\] hay \[IM \bot \left( P \right) \Rightarrow \overrightarrow {IM} \] và \[\overrightarrow {{n_P}} = \left( {1;2; - 2} \right)\] cùng phương, với \[\overrightarrow {{n_P}} \] là 1 vtpt của \[\left( P \right)\].
Tìm tọa độ điểm I ta gọi \[I\left( {x;y;z} \right)\]. Ta có:
\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \overrightarrow {IA} + 2\overrightarrow {IB} - \overrightarrow {IC} = \vec 0\]
\[ \Rightarrow \left( {x - 1;y;z - 2} \right) + 2\left( {x + 1;y - 1;z - 3} \right) - \left( {x - 3;y - 2;z} \right) = \vec 0\]
\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x - 1 + 2\left( {x + 1} \right) - \left( {x - 3} \right) = 0}\\{y + 2\left( {y - 1} \right) - \left( {y - 2} \right) = 0}\\{z - 2 + 2\left( {z - 3} \right) - z = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2x + 4 = 0}\\{2y = 0}\\{2z - 8 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = - 2}\\{y = 0}\\{z = 4}\end{array}} \right. \Rightarrow I\left( { - 2;0;4} \right)\]
Khi đó ta có \[\overrightarrow {IM} = \left( {a + 2;b;c - 4} \right)\]
Vì \[\overrightarrow {IM} \] và \[\overrightarrow {{n_P}} = \left( {1;2; - 2} \right)\] cùng phương, lại có \[M \in \left( P \right)\] nên ta có hệ phương trình:
\[\left\{ {\begin{array}{*{20}{l}}{\frac{{a + 2}}{1} = \frac{b}{2} = \frac{{c - 4}}{{ - 2}}}\\{a + 2b - 2c + 1 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2a - b + 4 = 0}\\{b + c - 4 = 0}\\{a + 2b - 2c + 1 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = - 1}\\{b = 2}\\{c = 2}\end{array}} \right.\]
Vậy \[a + b + c = - 1 + 2 + 2 = 3\]
Đáp án C
Đã bán 189
Đã bán 1,3k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.
Câu 2:
Có bao nhiêu giá trị nguyên của m để hàm số \[y = \frac{{mx + 4}}{{x + m}}\] nghịch biến trên khoảng \[\left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]
Câu 3:
Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\sqrt 3 \], \[SA \bot \left( {ABCD} \right)\] và \[SA = a\sqrt 2 \]. Tính góc giữa SC và \[\left( {ABCD} \right)\].
Câu 4:
Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.
Câu 5:
Tọa độ tâm đối xứng của đồ thị hàm số \[y = {x^3} - 3x + 2\] là:
Câu 6:
Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z + 4 = 0.\] Viết phương trình mặt cầu có tâm thuộc đường thẳng \[\Delta \] và tiếp xúc với cả hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right).\]
Câu 7:
Giá trị nhỏ nhất của hàm số \[y = {x^2} + \frac{{16}}{x}\] trên \[\left( {0; + \infty } \right)\] bằng:
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
45 bài tập Xác suất có lời giải
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
50 bài tập Hình học không gian có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận