Câu hỏi:

29/04/2022 4,821

Biết rằng đường thẳng \[y = 1 - 2x\] cắt đồ thị hàm số \[y = \frac{{x - 2}}{{x - 1}}\] tại hai điểm phân biệt A và B. Độ dài đoạn thẳng AB bằng:

Đáp án chính xác

Hot: Hot: 500+ Đề thi thử tốt nghiệp THPT Quốc gia Toán, Văn, Anh, Sử, Địa...., ĐGNL các trường ĐH Quốc Gia Hà Nội, Tp. Hồ Chi Minh file word có đáp án (form 2025).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

- Xét phương trình hoành độ giao điểm.

- Áp dụng định lí Vi-ét cho phương trình bậc hai.

- Sử dụng công thức tính độ dài đoạn thẳng \[AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2}} \].

Giải chi tiết:

TXĐ: \[D = \mathbb{R}\backslash \left\{ 1 \right\}\]

Xét phương trình hoành độ giao điểm:

\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \frac{{x - 2}}{{x - 1}} = 1 - 2x \Leftrightarrow x - 2 = \left( {x - 1} \right)\left( {1 - 2x} \right)\]

x2=x12x2+2x2x22x1=0(*)

Khi đó hoành độ của điểm A và B lần lượt là \[{x_A},{\mkern 1mu} {\mkern 1mu} {x_B}\] là nghiệm của phương trình (*).

Áp dụng định lí Vi-ét ta có \[\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = 1}\\{{x_1}{x_2} = - \frac{1}{2}}\end{array}} \right.\].

Ta có: \[A\left( {{x_A};1 - 2{x_A}} \right);{\mkern 1mu} {\mkern 1mu} B\left( {{x_B};1 - 2{x_B}} \right)\] nên:

\[A{B^2} = {\left( {{x_B} - {x_A}} \right)^2} + {\left( {1 - 2{x_B} - 1 + 2{x_A}} \right)^2}\]

\[A{B^2} = {\left( {{x_B} - {x_A}} \right)^2} + 4{\left( {{x_B} - {x_A}} \right)^2}\]

\[A{B^2} = 5{\left( {{x_B} - {x_A}} \right)^2}\]

\[A{B^2} = 5\left[ {{{\left( {{x_A} + {x_B}} \right)}^2} - 4{x_A}{x_B}} \right]\]

\[A{B^2} = 5\left[ {{1^2} - 4.\left( { - \frac{1}{2}} \right)} \right] = 15\]

Vậy \[AB = \sqrt {15} \].

Đáp án D

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.

Xem đáp án » 29/04/2022 25,846

Câu 2:

Có bao nhiêu giá trị nguyên của m để hàm số \[y = \frac{{mx + 4}}{{x + m}}\] nghịch biến trên khoảng \[\left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]

Xem đáp án » 29/04/2022 17,979

Câu 3:

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\sqrt 3 \], \[SA \bot \left( {ABCD} \right)\] và \[SA = a\sqrt 2 \]. Tính góc giữa SC và \[\left( {ABCD} \right)\].

Xem đáp án » 29/04/2022 17,632

Câu 4:

Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.

Xem đáp án » 29/04/2022 16,443

Câu 5:

Tọa độ tâm đối xứng của đồ thị hàm số \[y = {x^3} - 3x + 2\] là:

Xem đáp án » 29/04/2022 12,792

Câu 6:

Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z + 4 = 0.\] Viết phương trình mặt cầu có tâm thuộc đường thẳng \[\Delta \] và tiếp xúc với cả hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right).\]

Xem đáp án » 29/04/2022 11,357

Câu 7:

Giá trị nhỏ nhất của hàm số \[y = {x^2} + \frac{{16}}{x}\] trên \[\left( {0; + \infty } \right)\] bằng:

Xem đáp án » 29/04/2022 10,723
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua