Câu hỏi:

29/04/2022 1,395

Cho hình chóp \[S.ABC\] có \[AB = 3a,{\mkern 1mu} {\mkern 1mu} BC = 4a,{\mkern 1mu} {\mkern 1mu} CA = 5a\], các mặt bên tạo với đáy góc \[{60^0}\], hình chiếu vuông góc của S lên mặt phẳng \[\left( {ABC} \right)\] thuộc miền trong tam giác ABC. Tính thể tích hình chóp \[S.ABC\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

- Gọi H là hình chiếu của S thuộc miền trong tam giác \[ABC\], chứng minh H là tâm đường tròn nội tiếp \[\Delta ABC\].

- Xác định góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến của hai mặt phẳng đó.

- Sử dụng công thức tính bán kính đường tròn nội tiếp tam giác \[r = \frac{S}{p}\], với \[S,{\mkern 1mu} {\mkern 1mu} p\] lần lượt là diện tích và nửa chu vi tam giác.

- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông tính chiều cao khối chóp.

- Tính thể tích khối chóp \[{V_{S.ABC}} = \frac{1}{3}SH.{S_{\Delta ABC}}\].

Giải chi tiết:

 (VD): Cho hình chóp \[S.ABC\] có \[AB = 3a,{\mkern 1mu} {\mkern 1mu} BC = 4a,{\mkern 1mu} {\mkern 1mu} CA = 5a\], các mặt bên tạo với đáy góc \[{60^0}\], hình chiếu vuông góc của S lên mặt p (ảnh 1)

Vì chóp \[S.ABC\] có các mặt bên tạo với đáy các góc bằng nhau và hình chiếu của S thuộc miền trong tam giác \[ABC\] nên hình chiếu của S là tâm đường tròn nội tiếp \[\Delta ABC\].

Gọi H là tâm đường tròn nội tiếp \[\Delta ABC\] \[ \Rightarrow SH \bot \left( {ABC} \right)\]

Xét \[\Delta ABC\] có \[A{B^2} + B{C^2} = C{A^2} = 25{a^2}\] nên \[\Delta ABC\] vuông tại B (định lí Pytago đảo).

Trong \[\left( {ABC} \right)\] kẻ \[HK//BC{\mkern 1mu} {\mkern 1mu} \left( {K \in AB} \right)\] ta có \[\left\{ {\begin{array}{*{20}{l}}{AB \bot SH}\\{AB \bot HK}\end{array}} \right. \Rightarrow AB \bot \left( {SHK} \right) \Rightarrow AB \bot SK\].

\[\left\{ {\begin{array}{*{20}{l}}{\left( {SAB} \right) \cap \left( {ABC} \right) = AB}\\{SK \subset \left( {SAB} \right);{\mkern 1mu} {\mkern 1mu} SK \bot AB}\\{HK \subset \left( {ABC} \right);{\mkern 1mu} {\mkern 1mu} HK \bot AB}\end{array}} \right.\]

\[ \Rightarrow \angle \left( {\left( {SAB} \right);\left( {ABC} \right)} \right) = \angle \left( {SK;HK} \right) = \angle SKH = {60^0}\].

Vì HK là bán kính đường tròn nội tiếp \[\Delta ABC\] nên \[HK = \frac{{{S_{\Delta ABC}}}}{{{p_{\Delta ABC}}}} = \frac{{\frac{1}{2}.3a.4a}}{{\frac{{3a + 4a + 5a}}{2}}} = a\].

Xét tam giác vuông \[SHK\] ta có \[SH = HK.\tan {60^0} = a\sqrt 3 \].

Vậy \[{V_{S.ABC}} = \frac{1}{3}SH.{S_{\Delta ABC}} = \frac{1}{3}a\sqrt 3 .\frac{1}{2}.3a.4a = 2\sqrt 3 {a^3}\].

Đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải:

- Gọi số tự nhiên có 4 chữ số khác nhau là \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \left( {a;b;c;d \in \left\{ {0;1;2;3;4;5} \right\},{\mkern 1mu} {\mkern 1mu} a \ne b \ne c \ne d} \right)\].

- Vì \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 15\] nên \[\left\{ {\begin{array}{*{20}{l}}{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 5 \Rightarrow d \in \left\{ {0;5} \right\}}\\{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3}\end{array}} \right.\].

- Ứng với mõi trường hợp của d, tìm các cặp số \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\] tương ứng.

Giải chi tiết:

Gọi số tự nhiên có 4 chữ số khác nhau là \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \left( {a;b;c;d \in \left\{ {0;1;2;3;4;5} \right\},{\mkern 1mu} {\mkern 1mu} a \ne b \ne c \ne d} \right)\].

Vì \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 15\] nên \[\left\{ {\begin{array}{*{20}{l}}{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 5 \Rightarrow d \in \left\{ {0;5} \right\}}\\{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3}\end{array}} \right.\].

+ TH1: \[d = 0\], số cần tìm có dạng \[\overline {abc0} \] \[ \Rightarrow a + b + c{\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3\].

Các bộ ba chữ số chia hết cho 3 là \[\left\{ {1;2;3} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {1;3;5} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {2;3;4} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {3;4;5} \right\}\].

⇒ có \[4.3! = 24\] cách chọn \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\].

⇒ Có 24 số thỏa mãn.

TH2: \[d = 5\], số cần tìm có dạng \[\overline {abc5} \] \[ \Rightarrow a + b + c + 5{\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3\] \[ \Rightarrow a + b + c\] chia 3 dư 1.

Các bộ ba chữ số chia 3 dư 1 là \[\left\{ {0;1;3} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {1;2;4} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {0;3;4} \right\}\].

⇒ có \[2.2.2! + 3! = 14\] cách chọn \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\].

⇒ Có 14 số thỏa mãn.

Vậy có tất cả \[14 + 14 = 38\] số thỏa mãn.

Đáp án A

Lời giải

Phương pháp giải:

- Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng đó.

- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông để tính góc.

- Sử dụng công thức tính nhanh: Độ dài đường chéo của hình vuông cạnh a là \[a\sqrt 2 \].

Giải chi tiết:

 (TH): Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\sqrt 3 \], \[SA \bot \left( {ABCD} \right)\] và \[SA = a\sqrt 2 \]. Tính góc giữa SC và \[\left( {ABCD} \right)\].  (ảnh 1)

Vì \[SA \bot \left( {ABCD} \right)\] nên \[AC\] là hình chiếu vuông góc của \[SC\] lên \[\left( {ABCD} \right)\].

\[ \Rightarrow \angle \left( {SC;\left( {ABCD} \right)} \right) = \angle \left( {SC;AC} \right) = \angle SCA\].

Vì \[ABCD\] là hình vuông cạnh \[a\sqrt 3 \] nên \[AC = a\sqrt 3 .\sqrt 2 = a\sqrt 6 \].

Xét tam giác vuông \[SAC\] ta có: \[\tan \angle SCA = \frac{{SA}}{{SC}} = \frac{1}{{\sqrt 3 }}\] \[ \Rightarrow \angle SCA = {30^0}\].

Vậy \[\angle \left( {SC;\left( {ABCD} \right)} \right) = {30^0}\].

Đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Tọa độ tâm đối xứng của đồ thị hàm số \[y = {x^3} - 3x + 2\] là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z + 4 = 0.\] Viết phương trình mặt cầu có tâm thuộc đường thẳng \[\Delta \] và tiếp xúc với cả hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay