Câu hỏi:
29/04/2022 943Cho khối lăng trụ tam giác đều \[ABC.A'B'C'\] có cạnh đáy là \[2a\] và khoảng cách từ điểm A đến mặt phẳng \[\left( {A'BC} \right)\] bằng a. Tính thể tích của khối lăng trụ \[ABC.A'B'C'\].
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp giải:
- Xác định góc từ điểm \[A\] đến \[\left( {A'BC} \right)\].
- Sử dụng hệ thức lượng trong tam giác vuông tính \[A'A\].
- Tính thể tích \[{V_{ABC.A'B'C'}} = A'A.{S_{\Delta ABC}}\].
Giải chi tiết:
Gọi M là trung điểm của BC ta có \[\left\{ {\begin{array}{*{20}{l}}{BC \bot AM}\\{BC \bot AA'}\end{array}} \right. \Rightarrow BC \bot \left( {A'BC} \right)\].
Trong \[\left( {A'BC} \right)\] kẻ \[AH \bot A'M{\mkern 1mu} {\mkern 1mu} \left( {H \in A'M} \right)\] ta có: \[\left\{ {\begin{array}{*{20}{l}}{AH \bot BC}\\{AH \bot A'M}\end{array}} \right. \Rightarrow AH \bot \left( {A'BC} \right)\]
\[ \Rightarrow d\left( {A;\left( {A'BC} \right)} \right) = AH = a\].
Vì tam giác \[ABC\] đều cạnh \[2a\] nên \[AM = 2a.\frac{{\sqrt 3 }}{2} = a\sqrt 3 \] và \[{S_{\Delta ABC}} = {\left( {2a} \right)^2}\frac{{\sqrt 3 }}{4} = {a^2}\sqrt 3 \].
Áp dụng hệ thức lượng trong tam giác vuông \[AA'M\] ta có \[\frac{1}{{A{H^2}}} = \frac{1}{{A'{A^2}}} + \frac{1}{{A{M^2}}} \Rightarrow \frac{1}{{{a^2}}} = \frac{1}{{A'{A^2}}} + \frac{1}{{3{a^2}}}\]
\[ \Rightarrow \frac{1}{{A'{A^2}}} = \frac{2}{{3{a^2}}} \Rightarrow A'A = \frac{{a\sqrt 6 }}{2}\]
Vậy \[{V_{ABC.A'B'C'}} = A'A.{S_{\Delta ABC}} = \frac{{a\sqrt 6 }}{2}.{a^2}\sqrt 3 = \frac{{3{a^3}\sqrt 2 }}{2}\].
Đáp án D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.
Câu 2:
Có bao nhiêu giá trị nguyên của m để hàm số \[y = \frac{{mx + 4}}{{x + m}}\] nghịch biến trên khoảng \[\left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]
Câu 3:
Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.
Câu 4:
Giá trị nhỏ nhất của hàm số \[y = {x^2} + \frac{{16}}{x}\] trên \[\left( {0; + \infty } \right)\] bằng:
Câu 5:
Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z + 4 = 0.\] Viết phương trình mặt cầu có tâm thuộc đường thẳng \[\Delta \] và tiếp xúc với cả hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right).\]
Câu 6:
Tọa độ tâm đối xứng của đồ thị hàm số \[y = {x^3} - 3x + 2\] là:
Câu 7:
Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\sqrt 3 \], \[SA \bot \left( {ABCD} \right)\] và \[SA = a\sqrt 2 \]. Tính góc giữa SC và \[\left( {ABCD} \right)\].
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 1)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Bộ đề thi thử Đại học môn Toán mới nhất cực hay có lời giải (Đề 1)
về câu hỏi!