Câu hỏi:

29/04/2022 1,024

Tìm tập hợp các điểm biểu diễn số phức z thỏa mãn \[\left| {z - 1 + 3i} \right| = \left| {\bar z + 1 - i} \right|\].

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

- Sử dụng công thức \[\overline {{z_1}} + \overline {{z_2}} = \overline {{z_1} + {z_2}} \]; \[\left| {\bar z} \right| = \left| z \right|\].

- Đặt \[z = a + bi\], sử dụng công thức \[\left| z \right| = \sqrt {{a^2} + {b^2}} \], biến đổi rút ra mối quan hệ giữa \[a,{\mkern 1mu} {\mkern 1mu} b\] và kết luận.

Giải chi tiết:

Theo bài ra ta có

\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left| {z - 1 + 3i} \right| = \left| {\bar z + 1 - i} \right|\]

\[ \Leftrightarrow \left| {z - 1 + 3i} \right| = \left| {\bar z + \overline {1 + i} } \right| \Leftrightarrow \left| {z - 1 + 3i} \right| = \left| {\overline {z + 1 + i} } \right|\]\[ \Leftrightarrow \left| {z - 1 + 3i} \right| = \left| {z + 1 + i} \right|\]

Đặt z=a+bi ta có:

\[\left| {a + bi - 1 + 3i} \right| = \left| {a + bi + 1 + i} \right|\]

\[ \Leftrightarrow \left| {\left( {a - 1} \right) + \left( {b + 3} \right)i} \right| = \left| {a + 1 + \left( {b + 1} \right)i} \right|\]\[ \Leftrightarrow {\left( {a - 1} \right)^2} + {\left( {b + 3} \right)^2} = {\left( {a + 1} \right)^2} + {\left( {b + 1} \right)^2}\]

\[ \Leftrightarrow - 2a + 1 + 6b + 9 = 2a + 1 + 2b + 1 \Leftrightarrow 4a - 4b - 8 = 0\]

\[ \Leftrightarrow a - b - 2 = 0\]

Vậy tập hợp các điểm biểu diễn số phức \[z\] là đường thẳng \[x - y - 2 = 0\].

Đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.

Xem đáp án » 29/04/2022 17,691

Câu 2:

Có bao nhiêu giá trị nguyên của m để hàm số \[y = \frac{{mx + 4}}{{x + m}}\] nghịch biến trên khoảng \[\left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]

Xem đáp án » 29/04/2022 17,338

Câu 3:

Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.

Xem đáp án » 29/04/2022 15,748

Câu 4:

Tọa độ tâm đối xứng của đồ thị hàm số \[y = {x^3} - 3x + 2\] là:

Xem đáp án » 29/04/2022 10,827

Câu 5:

Giá trị nhỏ nhất của hàm số \[y = {x^2} + \frac{{16}}{x}\] trên \[\left( {0; + \infty } \right)\] bằng:

Xem đáp án » 29/04/2022 10,347

Câu 6:

Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z + 4 = 0.\] Viết phương trình mặt cầu có tâm thuộc đường thẳng \[\Delta \] và tiếp xúc với cả hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right).\]

Xem đáp án » 29/04/2022 10,234

Câu 7:

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\sqrt 3 \], \[SA \bot \left( {ABCD} \right)\] và \[SA = a\sqrt 2 \]. Tính góc giữa SC và \[\left( {ABCD} \right)\].

Xem đáp án » 29/04/2022 9,834

Bình luận


Bình luận