Câu hỏi:

29/04/2022 8,738

Cho hình chóp \[S.ABC\] có đáy \[ABC\] là tam giác vuông cân tại B, \[AB = BC = 3a\], góc \[\angle SAB = \angle SCB = {90^0}\]và khoảng cách từ A đến mặt phẳng \[\left( {SBC} \right)\] bằng \[a\sqrt 6 \]. Tính diện tích mặt cầu ngoại tiếp hình chóp \[S.ABC\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

Giải chi tiết:

 (VDC): Cho hình chóp \[S.ABC\] có đáy \[ABC\] là tam giác vuông cân tại B, \[AB = BC = 3a\], góc \[\angle SAB = \angle SCB = {90^0}\]và khoảng cách từ A đến mặt phẳng \[\left( {SBC} \right)\ (ảnh 1)

Gọi I là trung điểm của \[SB\].

Vì \[\angle SAB = \angle SCB = {90^0}\] nên \[IS = IA = IB = IC\], do đó I là tâm mặt cầu ngoại tiếp chóp \[S.ABC\], bán kính \[R = IS = \frac{1}{2}SB\].

Xét \[{\Delta _v}SAB\] và \[{\Delta _v}SCB\] có \[AB = CB{\mkern 1mu} \left( {gt} \right),{\mkern 1mu} {\mkern 1mu} SB\] chung \[ \Rightarrow {\Delta _v}SAB = {\Delta _v}SCB\] (cạnh huyền – cạnh góc vuông)

\[ \Rightarrow SA = S \Rightarrow \Delta SAC\] cân tại S.

Gọi M là trung điểm của AC ta có \[\left\{ {\begin{array}{*{20}{l}}{SM \bot AC}\\{BM \bot AC}\end{array}} \right. \Rightarrow AC \bot \left( {SBM} \right)\].

Trong \[\left( {SBM} \right)\] kẻ \[SH \bot BM\] ta có: {SHBMSHAC(AC(SBM))SH(ABC).

Đặt \[SA = SC = x\].

Vì \[\Delta ABC\] vuông cân tại B nên \[AC = AB\sqrt 2 = 3a\sqrt 2 \Rightarrow BM = AM = MC = \frac{{3a\sqrt 2 }}{2}\]

Áp dụng định lí Pytago ta có:

\[SM = \sqrt {S{C^2} - M{C^2}} = \sqrt {{x^2} - \frac{{9{a^2}}}{2}} \]

\[SB = \sqrt {B{C^2} + S{C^2}} = \sqrt {9{a^2} + {x^2}} \].

Gọi p là nửa chu vi tam giác \[SBM\] ta có \[p = \frac{{\sqrt {{x^2} - \frac{{9{a^2}}}{2}} + \sqrt {9{a^2} + {x^2}} + \frac{{9{a^2}}}{2}}}{2}\].

Diện tích tam giác \[SBM\] là: SSBM=p(pSM)(pSB)(pBM)

Khi đó ta có \[SH = \frac{{2{S_{\Delta SBM}}}}{{BM}}\].

Ta có:

\[{V_{S.ABC}} = \frac{1}{3}SH.{S_{\Delta ABC}} = \frac{1}{3}d\left( {A;\left( {SBC} \right)} \right).{S_{\Delta SBC}}\]

\[ \Rightarrow SH.{S_{\Delta ABC}} = d\left( {A;\left( {SBC} \right)} \right).{S_{\Delta SBC}}\]

\[ \Leftrightarrow \frac{{2{S_{\Delta SBM}}}}{{BM}}.\frac{1}{2}.3a.3a = a\sqrt 6 .\frac{1}{2}.3a.x \Leftrightarrow x = 3\sqrt 3 a\]

Áp dụng định lí Pytago ta có: \[SB = \sqrt {S{C^2} + B{C^2}} = \sqrt {27{a^2} + 9{a^2}} = 6a \Rightarrow R = IS = 3a\].

Vậy diện tích mặt cầu ngoại tiếp chóp \[S.ABC\] là \[S = 4\pi {R^2} = 4\pi .9{a^2} = 36\pi {a^2}\].

Đáp án A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.

Xem đáp án » 29/04/2022 30,404

Câu 2:

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\sqrt 3 \], \[SA \bot \left( {ABCD} \right)\] và \[SA = a\sqrt 2 \]. Tính góc giữa SC và \[\left( {ABCD} \right)\].

Xem đáp án » 29/04/2022 22,498

Câu 3:

Có bao nhiêu giá trị nguyên của m để hàm số \[y = \frac{{mx + 4}}{{x + m}}\] nghịch biến trên khoảng \[\left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]

Xem đáp án » 29/04/2022 18,399

Câu 4:

Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.

Xem đáp án » 29/04/2022 16,639

Câu 5:

Tọa độ tâm đối xứng của đồ thị hàm số \[y = {x^3} - 3x + 2\] là:

Xem đáp án » 29/04/2022 14,023

Câu 6:

Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z + 4 = 0.\] Viết phương trình mặt cầu có tâm thuộc đường thẳng \[\Delta \] và tiếp xúc với cả hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right).\]

Xem đáp án » 29/04/2022 11,925

Câu 7:

Giá trị nhỏ nhất của hàm số \[y = {x^2} + \frac{{16}}{x}\] trên \[\left( {0; + \infty } \right)\] bằng:

Xem đáp án » 29/04/2022 10,996
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay