Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật với , \(BC = 4a\), \(SA = 12a\) và \(SA\) vuông góc với đáy. Tính bán kính \(R\) của mặt cầu ngoại tiếp hình chóp \(S.ABCD\).
Quảng cáo
Trả lời:
* Gọi \(O\)là tâm của hình chữ nhật \(ABCD.\) Dựng đường thẳng \(Ox\) vuông góc mặt phẳng đáy, ta có \(Ox//SA \Rightarrow Ox \cap SC = I.\) Dễ thấy, \(I\) là trung điểm của \(SC,\) cách đều các đỉnh \(S,A,C\) và là tâm của mặt cầu ngoại tiếp hình chóp \(S.ABCD,\) ta có \(R = \frac{{SC}}{2}.\)
* Xét tam giác \(ABC:AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {9{a^2} + 16{a^2}} = 5a.\)
Xét tam giác \(SAC:SC = \sqrt {S{A^2} + A{C^2}} = \sqrt {144{a^2} + 25{a^2}} = 13a.\)
Vậy \(R = \frac{{SC}}{2} = \frac{{13a}}{2}.\)
Đáp án A
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(v\left( t \right) = S'\left( t \right) = - 3{t^2} + 18t + 1\) trên đoạn \(\left[ {0;12} \right].\)
Bảng biến thiên:

Vận tốc của chuyển động đạt giá trị lớn nhất theo dữ kiện của bài là: \(t = 3s.\)
Đáp án A
Lời giải
Ta có \(y' = \frac{{ - 4}}{{{{\left( {x - 1} \right)}^2}}} < 0{\rm{ }}\forall x \in \left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)
Đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.