Câu hỏi:

27/04/2022 674 Lưu

Cho hàm số \(y = f(x)\) có đồ thị như hình sau:

Cho hàm số \(y = f(x)\) có đồ thị như hình sau:Đồ thị hàm số \(g(x) = \frac{{2020}}{{2f(x) + 1}}\) có số đường tiệm cận đứng là:A.2.C. 4.D.5. (ảnh 1)

Đồ thị hàm số \(g(x) = \frac{{2020}}{{2f(x) + 1}}\) có số đường tiệm cận đứng là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hàm số \(y = f(x)\) có đồ thị như hình sau:Đồ thị hàm số \(g(x) = \frac{{2020}}{{2f(x) + 1}}\) có số đường tiệm cận đứng là:A.2.C. 4.D.5. (ảnh 2)

Ta có \(2f\left( x \right) + 1 = 0 \Leftrightarrow f\left( x \right) = - \frac{1}{2}.\)

Từ đồ thị ta có phương trình này có 4 nghiệm \({x_1},{x_2},{x_3},{x_4}.\)

Xét giới hạn \(\mathop {\lim }\limits_{x \to {x_i}} g\left( x \right) = \mathop {\lim }\limits_{x \to {x_i}} \frac{{2020}}{{2f\left( x \right) + 1}} = \infty \) do đó \(x = {x_i}\left( {i = 1,2,3,4} \right)\) đều là các tiệm cận đứng của đồ thị hàm số \(y = g\left( x \right) = \frac{{2020}}{{2f\left( x \right) + 1}}.\)

Vậy đồ thị hàm số \(y = g\left( x \right) = \frac{{2020}}{{2f\left( x \right) + 1}}\) có 4 đường tiệm cận đứng.

Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(v\left( t \right) = S'\left( t \right) = - 3{t^2} + 18t + 1\) trên đoạn \(\left[ {0;12} \right].\)

Bảng biến thiên:

Một vật chuyển động theo quy luật \(S =  - {t^3} + 9{t^2} + t + 10\), với \(t\) (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và \(S\) (mét) là quảng đường vật đi được trong  (ảnh 1)

Vận tốc của chuyển động đạt giá trị lớn nhất theo dữ kiện của bài là: \(t = 3s.\)

Đáp án A

Câu 2

Lời giải

Ta có \(y' = \frac{{ - 4}}{{{{\left( {x - 1} \right)}^2}}} < 0{\rm{ }}\forall x \in \left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)

Đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP