Câu hỏi:

13/04/2022 6,484

Cho hàm số \(y = \frac{{ax - 2}}{{cx + d}}\) có đồ thị như hình vẽ bên dưới

Cho hàm số y=(ax-2)/(cx+d) có đồ thị  như hình vẽ bên dưới Mệnh đề nào sau đây đúng   (ảnh 1)

Mệnh đề nào sau đây đúng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

-Đồ thị hàm số cắt trục hoành tại điểm \(\left( {\frac{2}{a};0} \right)\) nằm bên phải trục \[Oy\] nên \(\frac{2}{a} >0 \Rightarrow a >0\).

-Đồ thị hàm số có đường tiệm cận ngang là\(y = \frac{a}{c}\) nằm phía trên trục \[Ox\] nên \(\frac{a}{c} >0 \Rightarrow c >0\).

-Đồ thị hàm số có đường tiệm cận đứng là \(x = \frac{{ - d}}{c}\) nằm bên trái trục \[Oy\] nên \(\frac{{ - d}}{c} < 0 \Rightarrow d >0\). 

( hoặc đồ thị hàm số cắt trục tung tại điểm \(\left( {0; - \frac{2}{d}} \right)\)nằm phía dưới trục \[Ox\]nên \( - \frac{2}{d} < 0 \Rightarrow d >0\)) .

Chọn đáp án C

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 1)

Góc giữa hai mặt phẳng

Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 2)Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 3)là góc Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 4). Khi đó \(\sin \varphi = \frac{{d\left( {A,\alpha } \right)}}{{d\left( {A,\Delta } \right)}}\)

Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 5)

Gọi điểm Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 6)là trọng tâm Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 7), kéo dài tia Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 8)cắtCho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 9)tại Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 10). Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 11).

Khi đó góc giữa hai mặt phẳng\(\left( {SAC} \right)\) và \(\left( {BME} \right)\)là góc Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 12)có\(\sin \varphi = \frac{{d\left( {A,\left( {{\rm{BEF}}} \right)} \right)}}{{d\left( {A,EG} \right)}}\) .

Ta có \(d\left( {A,\left( {{\rm{BEF}}} \right)} \right) = \frac{{2a\sqrt 3 }}{3}\),\(d\left( {A,EG} \right) = \frac{{AE.AG}}{{\sqrt {A{E^2} + A{G^2}} }} = \frac{{a\sqrt {70} }}{7}\)

\(\sin \varphi = \frac{{d\left( {A,\left( {{\rm{BEF}}} \right)} \right)}}{{d\left( {A,EG} \right)}} = \frac{{\sqrt {14} }}{{\sqrt {15} }} \to {\rm{cos}}\varphi {\rm{ = }}\frac{1}{{\sqrt {15} }}\).

Nhận xét:Bản chất câu 49 khó khăn nhất là việc xác định góc giữa hai mặt phẳng. Tứ diện \(S.ABC\)là một tứ diện đặc biệt được tách từ hình chóp \(S.ABCD\)\(SD \bot \left( {ABCD} \right)\), mặt đáy là hình vuông. Đây là bài toán khá quen thuộc. Với những bài toán xác định góc phức tạp hơn các em học sinh có thể dùng phương pháp tọa độ.

Chọn đáp án B

Lời giải

Ta có \(g'\left( x \right) = \left( {4{x^3} - 4x} \right)f'\left( {{x^4} - 2{x^2} + m} \right)\) ; \(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}4{x^3} - 4x = 0{\rm{ }}\left( 1 \right)\\f'\left( {{x^4} - 2{x^2} + m} \right){\rm{ = 0 }}\left( 2 \right)\end{array} \right.\)

\(\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\\x = 0\end{array} \right.\) .

\(\left( 2 \right) \Leftrightarrow \left[ \begin{array}{l}{x^4} - 2{x^2} + m = - 2\\{x^4} - 2{x^2} + m = - 1\\{x^4} - 2{x^2} + m = 3\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l} - m = {x^4} - 2{x^2} + 2 = {g_1}\left( x \right)\\ - m = {x^4} - 2{x^2} + 1 = {g_2}\left( x \right)\\ - m = {x^4} - 2{x^2} - 3 = {g_3}\left( x \right)\end{array} \right.\).

Ta có bảng biến thiên của các hàm số \({g_1}\left( x \right),{g_2}\left( x \right),{g_3}\left( x \right)\) như hình vẽ:

Cho hàm số bậc bốn y=f(x)có đồ thị hàm sốy=f'(x) như hình bên dưới. Gọi S là tập hợp (ảnh 2)

Từ bảng biến trên, ta dễ thấy: với \[ - m \le - 4 \Leftrightarrow m \ge 4\] hàm số \(g\left( x \right) = f\left( {{x^4} - 2{x^2} + m} \right)\) có đúng 3 điểm cực trị.

Do đó: \(S = \left\{ {4;5;6;7;...;2020} \right\}\)

Vậy tổng tất cả các phần tử của \(S\) là: \(4 + 5 + 6 + ... + 2020 = \frac{{\left( {4 + 2020} \right)2017}}{2} = 2041204\).

Chọn đáp án B

Câu 3

Xét các số thực dương \(a,\,b\) thỏa mãn \[{\log _9}a = \log {}_{12}b = \log {}_{15}\left( {a + b} \right)\]. Mệnh đề nào dưới đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay