Câu hỏi:
13/04/2022 5,953Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, biết \[AB = 2a,\,\,AD = a,\,\,SA = 3a\] và \(SA\) vuông góc với mặt phẳng đáy. Gọi \(M\) là trung điểm cạnh \(CD\), điểm \(E \in SA\)sao cho \(SE = a\), cosin của góc giữa hai mặt phẳng\(\left( {SAC} \right)\) và \(\left( {BME} \right)\) bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Góc giữa hai mặt phẳng
và
là góc
. Khi đó \(\sin \varphi = \frac{{d\left( {A,\alpha } \right)}}{{d\left( {A,\Delta } \right)}}\)
Gọi điểm là trọng tâm
, kéo dài tia
cắt
tại
.
.
Khi đó góc giữa hai mặt phẳng\(\left( {SAC} \right)\) và \(\left( {BME} \right)\)là góc có\(\sin \varphi = \frac{{d\left( {A,\left( {{\rm{BEF}}} \right)} \right)}}{{d\left( {A,EG} \right)}}\) .
Ta có \(d\left( {A,\left( {{\rm{BEF}}} \right)} \right) = \frac{{2a\sqrt 3 }}{3}\),\(d\left( {A,EG} \right) = \frac{{AE.AG}}{{\sqrt {A{E^2} + A{G^2}} }} = \frac{{a\sqrt {70} }}{7}\)
\(\sin \varphi = \frac{{d\left( {A,\left( {{\rm{BEF}}} \right)} \right)}}{{d\left( {A,EG} \right)}} = \frac{{\sqrt {14} }}{{\sqrt {15} }} \to {\rm{cos}}\varphi {\rm{ = }}\frac{1}{{\sqrt {15} }}\).
Nhận xét:Bản chất câu 49 khó khăn nhất là việc xác định góc giữa hai mặt phẳng. Tứ diện \(S.ABC\)là một tứ diện đặc biệt được tách từ hình chóp \(S.ABCD\)có \(SD \bot \left( {ABCD} \right)\), mặt đáy là hình vuông. Đây là bài toán khá quen thuộc. Với những bài toán xác định góc phức tạp hơn các em học sinh có thể dùng phương pháp tọa độ.
Chọn đáp án B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới. Gọi \(S\) là tập hợp tất cả các giá trị nguyên của tham số \(m\) thuộc \(\left[ {1;2020} \right]\) để hàm số \(g\left( x \right) = f\left( {{x^4} - 2{x^2} + m} \right)\) có đúng \(3\) điểm cực trị. Tổng tất cả các phần tử của \(S\) là?
Câu 2:
Cho hàm số \(y = \frac{{ax - 2}}{{cx + d}}\) có đồ thị như hình vẽ bên dưới
Mệnh đề nào sau đây đúng
Câu 3:
Xét các số thực dương \(a,\,b\) thỏa mãn \[{\log _9}a = \log {}_{12}b = \log {}_{15}\left( {a + b} \right)\]. Mệnh đề nào dưới đây đúng?
Câu 4:
Cho biết sự rằng tỉ lệ tăng dân số thế giới hàng năm là \(1,32\% \), nếu tỉ lệ tăng dân số không thay đổi thì đến tăng trưởng dân số được tính theo công thức tăng trưởng liên tục \(S = A.{{\rm{e}}^{Nr}}\)trong đó \(A\) là dân số tại thời điểm mốc, \(S\) là số dân sau \(N\) năm, \(r\) là tỉ lệ tăng dân số hàng năm. Năm \(2013\) dân số thể giới vào khoảng \(7095\) triệu người. Biết năm \(2020\) dân số thế giới gần nhất với giá trị nào sau đây?
Câu 5:
Có bao nhiêu cặp số nguyên dương\(\left( {x;y} \right)\)thỏa mãn:\(2y{.2^x} = {\log _2}\left( {1 + \frac{{2x}}{y}} \right) + 2y + 3x\)
Câu 6:
Trong không gian \[Oxyz\], cho các vectơ \(\overrightarrow a = - 3\overrightarrow j + \overrightarrow k \) và \(\overrightarrow b = \left( {1;m;6} \right)\). Giá trị của \(m\) để \(\overrightarrow a \) vuông góc với \(\overrightarrow b \) bằng:
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
50 bài tập Hình học không gian có lời giải
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận