Câu hỏi:

13/04/2022 3,959

Có bao nhiêu cặp số nguyên dương\(\left( {x;y} \right)\)thỏa mãn:\(2y{.2^x} = {\log _2}\left( {1 + \frac{{2x}}{y}} \right) + 2y + 3x\)

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(2y{.2^x} = {\log _2}\left( {1 + \frac{{2x}}{y}} \right) + 2y + 3x\)

\(\begin{array}{l} \Leftrightarrow 2y{.2^x} = {\log _2}\left( {y + 2x} \right) - {\log _2}y + 2y + 3x\\ \Leftrightarrow y{.2^{x + 1}} + {\log _2}y + \left( {x + 1} \right) = 1 + {\log _2}\left( {y + 2x} \right) + 2y + 4x\\ \Leftrightarrow y{.2^{x + 1}} + {\log _2}\left( {y{{.2}^{x + 1}}} \right) = {\log _2}\left( {2y + 4x} \right) + \left( {2y + 4x} \right)\,\,\,\,\,\,\,(1)\end{array}\)

Ta thấy \(f\left( t \right) = {\log _2}t + t\) đồng biến trên \((0; + \infty )\) nên

\(\left( 1 \right) \Leftrightarrow y{.2^{x + 1}} = 2y + 4x \Leftrightarrow y{.2^x} = y + 2x \Rightarrow {2^x} = 1 + \frac{{2x}}{y}\) (2)

Do ynguyên dương nên \(1 + \frac{{2x}}{y} \le 1 + 2x\) (3)

Từ (2) và (3) ta có: \({2^x} \le 1 + 2x\) (4)

Xét \(f\left( x \right) = {2^x} - 2x - 1,\,\,x >0\)

\(f'\left( x \right) = {2^x}\ln 2 - 2 >0\,\,,\forall x \ge 3\)\( \Rightarrow f\left( x \right) \ge f\left( 3 \right) = {2^3} - 2.3 - 1 >0\,\,\forall x \ge 3\)

Suy ra \({2^x} - 2x - 1 >0\,\,\forall x \ge 3\)

Từ (4) và do x nguyên dương nên từ\({2^x} \le 1 + 2x \Rightarrow x \in \left\{ {1;2} \right\}\)

Thay \(x = 1\) vào (2) ta có \(y = 2\).

Thay \(x = 2\) vào (2) ta có \(y = \frac{4}{3}\)

Vậy có một cặp số nguyên dương \(\left( {x;y} \right)\)thỏa đề là: \(\left( {1;2} \right)\).

Nhận xét:

Kiên thức sử dụng:

1. Hàm sử dụng hàm đặc trưng để suy ra biểu thức quan hệ giữa x, y đơn giản hơn.

2. Sử dụng đánh giá bất đẳng thức cơ bản để thu hẹp miền x, y rồi thay vào tìm trực tiếp.

Chọn đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới. Gọi \(S\) là tập hợp tất cả các giá trị nguyên của tham số \(m\) thuộc \(\left[ {1;2020} \right]\) để hàm số \(g\left( x \right) = f\left( {{x^4} - 2{x^2} + m} \right)\) có đúng \(3\) điểm cực trị. Tổng tất cả các phần tử của \(S\) là?

Cho hàm số bậc bốn y=f(x)có đồ thị hàm sốy=f'(x) như hình bên dưới. Gọi S là tập hợp (ảnh 1)

Xem đáp án » 13/04/2022 8,025

Câu 2:

Cho hàm số \(y = \frac{{ax - 2}}{{cx + d}}\) có đồ thị như hình vẽ bên dưới

Cho hàm số y=(ax-2)/(cx+d) có đồ thị  như hình vẽ bên dưới Mệnh đề nào sau đây đúng   (ảnh 1)

Mệnh đề nào sau đây đúng

Xem đáp án » 13/04/2022 6,319

Câu 3:

Xét các số thực dương \(a,\,b\) thỏa mãn \[{\log _9}a = \log {}_{12}b = \log {}_{15}\left( {a + b} \right)\]. Mệnh đề nào dưới đây đúng?

Xem đáp án » 13/04/2022 5,152

Câu 4:

Cho biết sự rằng tỉ lệ tăng dân số thế giới hàng năm là \(1,32\% \), nếu tỉ lệ tăng dân số không thay đổi thì đến tăng trưởng dân số được tính theo công thức tăng trưởng liên tục \(S = A.{{\rm{e}}^{Nr}}\)trong đó \(A\) là dân số tại thời điểm mốc, \(S\) là số dân sau \(N\) năm, \(r\) là tỉ lệ tăng dân số hàng năm. Năm \(2013\) dân số thể giới vào khoảng \(7095\) triệu người. Biết năm \(2020\) dân số thế giới gần nhất với giá trị nào sau đây?

Xem đáp án » 13/04/2022 3,982

Câu 5:

Trong không gian \[Oxyz\], cho các vectơ \(\overrightarrow a = - 3\overrightarrow j + \overrightarrow k \) và \(\overrightarrow b = \left( {1;m;6} \right)\). Giá trị của \(m\) để \(\overrightarrow a \) vuông góc với \(\overrightarrow b \) bằng:

Xem đáp án » 13/04/2022 3,905

Câu 6:

Diện tích toàn phần của một hình nón có độ dài đường sinh \[l\] gấp đôi bán kính đáy \[r\] là

Xem đáp án » 13/04/2022 3,762

Bình luận


Bình luận