Câu hỏi:
13/04/2022 904Trong không gian, cho tam giác \(ABC\) vuông tại \(B\)có\(AB = a\sqrt 3 \) và \(AC = a\sqrt 7 \). Tính độ dài bán kính đáy \(R\) của hình nón nhận được khi quay tam giác \(ABC\) xung quanh trục \(AB\).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Chọn đáp án D
Từ giả thiết suy ra hình nón có đỉnh là
\(A\), tâm đường tròn đáy là \(B\), đường sinh \(\ell = AC = a\sqrt 7 \)và chiều cao hình nón là\(AB = a\sqrt 3 \).
Vậy độ dài bán kính đáy là \(BC = R\)của hình nón bằng: \(R = BC = \sqrt {A{C^2} - A{B^2}} = 2a\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tập xác định của hàm số \(y = {\log _3}\left( {x - 1} \right)\) là
Câu 2:
Cho tứ diện đều \(ABCD\) .Cosin của góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {DBC} \right)\) bằng
Câu 3:
Phương trình \({4^x} - {3.2^x} + 2 = 0\) có nghiệm thuộc khoảng
Câu 4:
Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình sau.
Hàm số \[y = f\left( {\left| x \right|} \right)\] có bao nhiêu điểm cực trị?
Câu 6:
Tiệm cận ngang của đồ thị hàm số \[y = \frac{{1 - 2x}}{{x - 3}}\] là
Câu 7:
Cho hình trụ có chiều cao \[8a\]. Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng \[2a\] thì thiết diện thu được là một hình chữ nhật có diện tích bằng \[48{a^2}\]. Thể tích của khối trụ được giới hạn bởi hình trụ đã cho bằng
về câu hỏi!