Câu hỏi:

13/04/2022 258 Lưu

Giá trị nhỏ nhất của hàm số \(f(x) = {x^3} + 3{x^2} - 9x - 7\) trên đoạn \([ - 4;0]\) bằng

A. \[20\].

B. \[13\].

C. \[ - 3\].

D. \[ - 7\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án D

Ta có \(f'(x) = 3{x^2} + 6x - 9\); \(f'(x) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1{\rm{ (Loa\"i i)}}\\x = - 3{\rm{ (TM)}}\end{array} \right.\)

\(f( - 4) = 13;f(0) = - 7;f( - 3) = 20\)

Vậy GTNN của hàm số \(f(x) = {x^3} + 3{x^2} - 9x - 7\)trên đoạn \([ - 4;0]\) là -7.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( {1; + \infty } \right)\).

B. \(\left[ {1; + \infty } \right)\).

C. \(\left( { - \infty ;1} \right)\).

D.\(\left( {3; + \infty } \right)\).

Lời giải

Chọn đáp án A

Hàm số \(y = {\log _3}\left( {x - 1} \right)\) có nghĩa khi \(x - 1 >0 \Rightarrow x >1\).

Vậy tập xác định của hàm số \(y = {\log _3}\left( {x - 1} \right)\) là \(\left( {1; + \infty } \right)\).

Câu 2

A. \(\frac{{\sqrt 3 }}{2}\).

B. \(\frac{{\sqrt 2 }}{2}\).

C. \(\frac{1}{2}\).

D. \(\frac{1}{3}\).

Lời giải

Chọn đáp án D

Cho tứ diện đều ABCD .Cosin của góc giữa hai mặt phẳng (ABC) và (DBC)  (ảnh 1)

Gọi tứ diện \[ABCD\] là tứ diện đều cạnh a.

Gọi \[H\] là tâm của tam giác\[ABC\]. Khi đó \(DH \bot \left( {ABC} \right)\) tại \[H\].

Gọi \(I\) là trung điểm của \[BC\]. Khi đó góc giữa mặt phẳng \(\left( {DBC} \right)\) và \(\left( {ABC} \right)\) là góc \(\widehat {DIH}\)

Ta có \(\cos \widehat {\left( {\left( {ABC} \right),\left( {DBC} \right)} \right)} = \cos \widehat {DIH} = \frac{{IH}}{{ID}}\).

Tam giác \[ABC\] đều \( \Rightarrow IH = \frac{1}{3}IA = \frac{1}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6}\).

Tam giác \[DBC\] đều \( \Rightarrow ID = \frac{{a\sqrt 3 }}{2} \Rightarrow \cos \widehat {\left( {\left( {ABC} \right),DBC} \right)} = \frac{1}{3}\).

Câu 3

A. \(\left( {\frac{1}{2};2} \right)\).

B. \(\left( {2;4} \right)\).

C.\(\left( { - 1;0} \right)\).

D. \(\left( {3;6} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\(y' = \frac{{{7^x}}}{{\ln 7}}\) .

B.\(y' = {7^x}\ln 7\).

C.\(y' = x{.7^{x - 1}}\).

D.\(y' = {7^{x - 1}}\ln 7\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( { - \infty ;\frac{1}{2}} \right] \cup \left[ {16; + \infty } \right)\).

B. \(\left( { - \infty ;\frac{1}{2}} \right) \cup \left( {16; + \infty } \right)\).

C. \(\left( {0;\frac{1}{2}} \right] \cup \left[ {16; + \infty } \right)\).

D. \(\left( {0;\frac{1}{2}} \right) \cup \left( {16; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP