Câu hỏi:
13/04/2022 287Đường cong ở hình dưới đây là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Chọn đáp án D
+ Do đây là đồ thị của hàm số bậc ba có nhánh cuối đồ thị đi lên nên hệ số \(a\) dương nên loại A.
+ Đồ thị hàm số giao với trục tung tại điểm có tung độ bằng \( - 2\) suy ra \(d = - 2\) nên loại B.
+ Ở đáp án C ta có:
\(y = {x^3} - 3{x^2} - 2.\)
\(y' = 3{x^2} - 6x\).
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right..\)
Suy ra hàm số không đạt cực trị tại \(x = 1,x = 3\) nên loại C.
+ Vậy Chọn đáp án đáp án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tập xác định của hàm số \(y = {\log _3}\left( {x - 1} \right)\) là
Câu 2:
Cho tứ diện đều \(ABCD\) .Cosin của góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {DBC} \right)\) bằng
Câu 3:
Phương trình \({4^x} - {3.2^x} + 2 = 0\) có nghiệm thuộc khoảng
Câu 4:
Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình sau.
Hàm số \[y = f\left( {\left| x \right|} \right)\] có bao nhiêu điểm cực trị?
Câu 6:
Tiệm cận ngang của đồ thị hàm số \[y = \frac{{1 - 2x}}{{x - 3}}\] là
Câu 7:
Cho hình trụ có chiều cao \[8a\]. Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng \[2a\] thì thiết diện thu được là một hình chữ nhật có diện tích bằng \[48{a^2}\]. Thể tích của khối trụ được giới hạn bởi hình trụ đã cho bằng
về câu hỏi!