Câu hỏi:

13/04/2022 215 Lưu

Gọi \({z_0}\) là nghiệm phức có phần ảo âm của phương trình \({z^2} + 2z + 3 = 0\). Môđun của số phức \({z_0} + 3\) bằng

A. \(6\).

B. \(\sqrt 2 \).

C. \(4\).

D. \(\sqrt 6 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án D

Ta có \({z^2} + 2z + 3 = 0\) \( \Leftrightarrow {z^2} + 2z + 1 = - 2\) \( \Leftrightarrow {\left( {z + 1} \right)^2} = {\left( {\sqrt 2 i} \right)^2}\)\( \Leftrightarrow \left[ \begin{array}{l}z = - 1 + \sqrt 2 i\\z = - 1 - \sqrt 2 i\end{array} \right.\).

Do \({z_0}\) là nghiệm phức có phần ảo âm của phương trình \({z^2} + 2z + 3 = 0\) nên \({z_0} = - 1 - \sqrt 2 i\).

Suy ra \({z_0} + 3 = 2 - \sqrt 2 i\). Do đó \(\left| {{z_0} + 3} \right| = \sqrt {{2^2} + {{\left( { - \sqrt 2 } \right)}^2}} = \sqrt 6 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( {1; + \infty } \right)\).

B. \(\left[ {1; + \infty } \right)\).

C. \(\left( { - \infty ;1} \right)\).

D.\(\left( {3; + \infty } \right)\).

Lời giải

Chọn đáp án A

Hàm số \(y = {\log _3}\left( {x - 1} \right)\) có nghĩa khi \(x - 1 >0 \Rightarrow x >1\).

Vậy tập xác định của hàm số \(y = {\log _3}\left( {x - 1} \right)\) là \(\left( {1; + \infty } \right)\).

Câu 2

A. \(\frac{{\sqrt 3 }}{2}\).

B. \(\frac{{\sqrt 2 }}{2}\).

C. \(\frac{1}{2}\).

D. \(\frac{1}{3}\).

Lời giải

Chọn đáp án D

Cho tứ diện đều ABCD .Cosin của góc giữa hai mặt phẳng (ABC) và (DBC)  (ảnh 1)

Gọi tứ diện \[ABCD\] là tứ diện đều cạnh a.

Gọi \[H\] là tâm của tam giác\[ABC\]. Khi đó \(DH \bot \left( {ABC} \right)\) tại \[H\].

Gọi \(I\) là trung điểm của \[BC\]. Khi đó góc giữa mặt phẳng \(\left( {DBC} \right)\) và \(\left( {ABC} \right)\) là góc \(\widehat {DIH}\)

Ta có \(\cos \widehat {\left( {\left( {ABC} \right),\left( {DBC} \right)} \right)} = \cos \widehat {DIH} = \frac{{IH}}{{ID}}\).

Tam giác \[ABC\] đều \( \Rightarrow IH = \frac{1}{3}IA = \frac{1}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6}\).

Tam giác \[DBC\] đều \( \Rightarrow ID = \frac{{a\sqrt 3 }}{2} \Rightarrow \cos \widehat {\left( {\left( {ABC} \right),DBC} \right)} = \frac{1}{3}\).

Câu 3

A. \(\left( {\frac{1}{2};2} \right)\).

B. \(\left( {2;4} \right)\).

C.\(\left( { - 1;0} \right)\).

D. \(\left( {3;6} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\(y' = \frac{{{7^x}}}{{\ln 7}}\) .

B.\(y' = {7^x}\ln 7\).

C.\(y' = x{.7^{x - 1}}\).

D.\(y' = {7^{x - 1}}\ln 7\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( { - \infty ;\frac{1}{2}} \right] \cup \left[ {16; + \infty } \right)\).

B. \(\left( { - \infty ;\frac{1}{2}} \right) \cup \left( {16; + \infty } \right)\).

C. \(\left( {0;\frac{1}{2}} \right] \cup \left[ {16; + \infty } \right)\).

D. \(\left( {0;\frac{1}{2}} \right) \cup \left( {16; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP