Câu hỏi:

13/04/2022 1,820 Lưu

Trong không gian với hệ tọa độ \[Oxyz\], cho hai điểm \(A\left( {4;\,0;\,1} \right)\) và \(B\left( { - 2;\,2;\,3} \right)\). Phương trình nào dưới đây là phương trình mặt phẳng trung trực của đoạn thẳng \(AB\)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án D

Gọi \(I\) là trung điểm của đoạn thẳng \(AB\). Gọi \(\left( \alpha \right)\) là mặt phẳng trung trực của đoạn thẳng \(AB\)

\(\left( \alpha \right)\) đi qua \(I\left( {1;\,1;\,2} \right)\) và nhận \(\overrightarrow {AB} = \left( { - 6;\,2;\,2} \right)\) làm một VTPT.

\( \Rightarrow \) \(\left( \alpha \right): - 6\left( {x - 1} \right) + 2\left( {y - 1} \right) + 2\left( {z - 2} \right) = 0\) \( \Rightarrow \left( \alpha \right)\): \(3x - y - z = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn đáp án A

Hàm số \(y = {\log _3}\left( {x - 1} \right)\) có nghĩa khi \(x - 1 >0 \Rightarrow x >1\).

Vậy tập xác định của hàm số \(y = {\log _3}\left( {x - 1} \right)\) là \(\left( {1; + \infty } \right)\).

Câu 2

Lời giải

Chọn đáp án D

Cho tứ diện đều ABCD .Cosin của góc giữa hai mặt phẳng (ABC) và (DBC)  (ảnh 1)

Gọi tứ diện \[ABCD\] là tứ diện đều cạnh a.

Gọi \[H\] là tâm của tam giác\[ABC\]. Khi đó \(DH \bot \left( {ABC} \right)\) tại \[H\].

Gọi \(I\) là trung điểm của \[BC\]. Khi đó góc giữa mặt phẳng \(\left( {DBC} \right)\) và \(\left( {ABC} \right)\) là góc \(\widehat {DIH}\)

Ta có \(\cos \widehat {\left( {\left( {ABC} \right),\left( {DBC} \right)} \right)} = \cos \widehat {DIH} = \frac{{IH}}{{ID}}\).

Tam giác \[ABC\] đều \( \Rightarrow IH = \frac{1}{3}IA = \frac{1}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6}\).

Tam giác \[DBC\] đều \( \Rightarrow ID = \frac{{a\sqrt 3 }}{2} \Rightarrow \cos \widehat {\left( {\left( {ABC} \right),DBC} \right)} = \frac{1}{3}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP