Câu hỏi:
13/04/2022 779Gọi \(S\) là tập hợp các giá trị nguyên của \(m\) để hàm số \(f\left( x \right) = - 9{x^3} + 9\left( {m + 1} \right){x^2} - 3\left( {2m + 5} \right)x + \frac{{22}}{7}\) nghịch biến trên \(\mathbb{R}\). Tìm số phần tử của tập \(S\).
Câu hỏi trong đề: Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !!
Quảng cáo
Trả lời:
Chọn đáp án C
Ta có: \(f'\left( x \right) = - 27{x^2} + 18\left( {m + 1} \right)x - 3\left( {2m + 5} \right)\)
Hàm số nghịch biến trên \(\mathbb{R}\)
\(\begin{array}{l} \Leftrightarrow f'\left( x \right) \le 0,\,\forall x \in \mathbb{R}\\ \Leftrightarrow - 27{x^2} + 18\left( {m + 1} \right)x - 3\left( {2m + 5} \right) \le 0,\,\forall x \in \mathbb{R}\\ \Leftrightarrow 9{x^2} - 6\left( {m + 1} \right)x + \left( {2m + 5} \right) \ge 0,\,\forall x \in \mathbb{R}\\ \Leftrightarrow \Delta ' \le 0\\ \Leftrightarrow {m^2} - 4 \le 0\\ \Leftrightarrow - 2 \le m \le 2\end{array}\)
Vì \(m \in \mathbb{Z}\) nên \(m \in S = \left\{ { - 2; - 1;0;1;2} \right\}\).
Vây số phần tử của tập hợp \(S\) là 5.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn đáp án A
Hàm số \(y = {\log _3}\left( {x - 1} \right)\) có nghĩa khi \(x - 1 >0 \Rightarrow x >1\).
Vậy tập xác định của hàm số \(y = {\log _3}\left( {x - 1} \right)\) là \(\left( {1; + \infty } \right)\).
Lời giải
Chọn đáp án D
Gọi tứ diện \[ABCD\] là tứ diện đều cạnh a.
Gọi \[H\] là tâm của tam giác\[ABC\]. Khi đó \(DH \bot \left( {ABC} \right)\) tại \[H\].
Gọi \(I\) là trung điểm của \[BC\]. Khi đó góc giữa mặt phẳng \(\left( {DBC} \right)\) và \(\left( {ABC} \right)\) là góc \(\widehat {DIH}\)
Ta có \(\cos \widehat {\left( {\left( {ABC} \right),\left( {DBC} \right)} \right)} = \cos \widehat {DIH} = \frac{{IH}}{{ID}}\).
Tam giác \[ABC\] đều \( \Rightarrow IH = \frac{1}{3}IA = \frac{1}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6}\).
Tam giác \[DBC\] đều \( \Rightarrow ID = \frac{{a\sqrt 3 }}{2} \Rightarrow \cos \widehat {\left( {\left( {ABC} \right),DBC} \right)} = \frac{1}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.