Câu hỏi:

13/04/2022 266

Cho hai số thực

\(x\), \(y\) thỏa mãn \(x + 3y + 1 = {y^2} - \frac{1}{y} + \frac{{3x + 4}}{{\sqrt {x + 1} }}\). Tìm giá trị nhỏ nhất của biểu thức \(P = x - 2y + 2020\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án B

Với \(\left\{ \begin{array}{l}x >- 1\\y \ne 0\end{array} \right.\) thì \(x + 3y + 1 = {y^2} - \frac{1}{y} + \frac{{3x + 4}}{{\sqrt {x + 1} }} \Leftrightarrow x + 1 - \frac{{3x + 4}}{{\sqrt {x + 1} }} = {y^2} - 3y - \frac{1}{y}\)\( \Leftrightarrow x + 1 - 3\sqrt {x + 1} - \frac{1}{{\sqrt {x + 1} }} = {y^2} - 3y - \frac{1}{y}\)\(\left( 1 \right)\).

Xét hàm số \(f\left( t \right) = {t^2} - 3t - \frac{1}{t}\) trên khoảng \(\left( {0; + \infty } \right)\) ta có \(f'\left( t \right) = 2t - 3 + \frac{1}{{{t^2}}} = \frac{{2{t^3} - 3{t^2} + 1}}{{{t^2}}} = \frac{{\left( {2t + 1} \right){{\left( {t - 1} \right)}^2}}}{{{t^2}}} \ge 0,\forall t >0\)\( \Rightarrow \)hàm số \(f\left( t \right)\)đồng biến trên khoảng \(\left( {0; + \infty } \right)\).

Do đó \[\left( 1 \right) \Leftrightarrow f\left( {\sqrt {x + 1} } \right) = f\left( y \right) \Leftrightarrow y = \sqrt {x + 1} \].

khi \(y = \sqrt {x + 1} \) thì \(P = x - 2y + 2020 = x + 1 - 2\sqrt {x + 1} + 1 + 2018 = {\left( {\sqrt {x + 1} - 1} \right)^2} + 2018 \ge 2018\)

Vậy giá trị nhỏ nhất của \(P\) bằng \(2018\) khi \(\left\{ \begin{array}{l}\sqrt {x + 1} - 1 = 0\\y = \sqrt {x + 1} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = 1\end{array} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Tập xác định của hàm số \(y = {\log _3}\left( {x - 1} \right)\) là

Lời giải

Chọn đáp án A

Hàm số \(y = {\log _3}\left( {x - 1} \right)\) có nghĩa khi \(x - 1 >0 \Rightarrow x >1\).

Vậy tập xác định của hàm số \(y = {\log _3}\left( {x - 1} \right)\) là \(\left( {1; + \infty } \right)\).

Câu 2

Cho tứ diện đều \(ABCD\) .Cosin của góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {DBC} \right)\) bằng

Lời giải

Chọn đáp án D

Cho tứ diện đều ABCD .Cosin của góc giữa hai mặt phẳng (ABC) và (DBC)  (ảnh 1)

Gọi tứ diện \[ABCD\] là tứ diện đều cạnh a.

Gọi \[H\] là tâm của tam giác\[ABC\]. Khi đó \(DH \bot \left( {ABC} \right)\) tại \[H\].

Gọi \(I\) là trung điểm của \[BC\]. Khi đó góc giữa mặt phẳng \(\left( {DBC} \right)\) và \(\left( {ABC} \right)\) là góc \(\widehat {DIH}\)

Ta có \(\cos \widehat {\left( {\left( {ABC} \right),\left( {DBC} \right)} \right)} = \cos \widehat {DIH} = \frac{{IH}}{{ID}}\).

Tam giác \[ABC\] đều \( \Rightarrow IH = \frac{1}{3}IA = \frac{1}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6}\).

Tam giác \[DBC\] đều \( \Rightarrow ID = \frac{{a\sqrt 3 }}{2} \Rightarrow \cos \widehat {\left( {\left( {ABC} \right),DBC} \right)} = \frac{1}{3}\).

Câu 3

Phương trình \({4^x} - {3.2^x} + 2 = 0\) có nghiệm thuộc khoảng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Đạo hàm của hàm số \(y = {7^x}\) trên \(\mathbb{R}\) là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Tập nghiệm của bất phương trình \({\log ^2}_2\left( {2x} \right) - 5{\log _2}x - 5 \ge 0\) là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay