Cho phương trình \({\left( {\sqrt 3 } \right)^{3{x^2} - 3mx + 4}} - {\left( {\sqrt 3 } \right)^{2{x^2} - mx + 3m}} = - {x^2} + 2mx + 3m - 4\,(1)\). S là tập hợp tất cả các giá trị \(m\)nguyên thuộc khoảng \(\left( {0;2020} \right)\)sao cho phương trình (1) có 2 nghiệm phân biệt. Số phần tử của \(S\)là
Quảng cáo
Trả lời:
Chọn đáp án A
Đặt \(u = 3{x^2} - 3mx + 4,\,\,v = 2{x^2} - mx + 3m\) suy ra\(v - u = - {x^2} + 2mx + 3m - 4\).
Phương trình đã cho trở thành: \({\left( {\sqrt 3 } \right)^u} - {\left( {\sqrt 3 } \right)^v} = v - u\,\, \Leftrightarrow {\left( {\sqrt 3 } \right)^u} + u = {\left( {\sqrt 3 } \right)^v} + v\,\,.\,\,(2)\)
Xét hàm số \(f(t) = {\left( {\sqrt 3 } \right)^t} + t\) trên \(\mathbb{R}\).
Ta có: \(f'(t) = {\left( {\sqrt 3 } \right)^t}\ln \sqrt 3 + 1 >0,\,\,\forall t \in \mathbb{R}\) suy ra hàm số đồng biến trên \(\mathbb{R}\).
Khi đó phương trình (2) được viết dưới dạng \(f(u) = f(v) \Leftrightarrow u = v\)\( \Leftrightarrow 3{x^2} - 3mx + 4 = 2{x^2} - mx + 3m \Leftrightarrow {x^2} - 2mx - 3m + 4 = 0\,\,(3)\)
Phương trình (1) có 2 nghiệm phân biệt \( \Leftrightarrow \)\(\left( 3 \right)\)có 2 nghiệm phân biệt\( \Leftrightarrow \Delta ' >0\)
\( \Leftrightarrow {m^2} + 3m - 4 >0 \Leftrightarrow \left[ \begin{array}{l}m < - 4\\m >1\end{array} \right.\,.\)</>
Vì \(m \in \left( {0;2020} \right)\)nên \(m \in \left\{ {2,3,4,...,2019} \right\}\) .
Vậy số phần tử của \(S\)là \(2018.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn đáp án A
Hàm số \(y = {\log _3}\left( {x - 1} \right)\) có nghĩa khi \(x - 1 >0 \Rightarrow x >1\).
Vậy tập xác định của hàm số \(y = {\log _3}\left( {x - 1} \right)\) là \(\left( {1; + \infty } \right)\).
Lời giải
Chọn đáp án D
Gọi tứ diện \[ABCD\] là tứ diện đều cạnh a.
Gọi \[H\] là tâm của tam giác\[ABC\]. Khi đó \(DH \bot \left( {ABC} \right)\) tại \[H\].
Gọi \(I\) là trung điểm của \[BC\]. Khi đó góc giữa mặt phẳng \(\left( {DBC} \right)\) và \(\left( {ABC} \right)\) là góc \(\widehat {DIH}\)
Ta có \(\cos \widehat {\left( {\left( {ABC} \right),\left( {DBC} \right)} \right)} = \cos \widehat {DIH} = \frac{{IH}}{{ID}}\).
Tam giác \[ABC\] đều \( \Rightarrow IH = \frac{1}{3}IA = \frac{1}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6}\).
Tam giác \[DBC\] đều \( \Rightarrow ID = \frac{{a\sqrt 3 }}{2} \Rightarrow \cos \widehat {\left( {\left( {ABC} \right),DBC} \right)} = \frac{1}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.