Câu hỏi:

13/04/2022 1,021

Cho hàm số y=fx có đồ thị như hình vẽ bên. Đồ thị hàm số y=fx.x2+xfx2x21x242x+1 có bao nhiêu đường tiệm cận đứng?

Cho hàm số y = f(x) có đồ thị như hình vẽ bên.  Đồ thị hàm số y = f(x) nhân căn bậc 2 của ( x^2 + x)/[f(x) - 2](x^2 - 1)(x^2 - 4)(2x +1) có bao nhiêu đường tiệm cận đứng (ảnh 1)

Đáp án chính xác

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Trước tiên ta rút gọn phần thức fx.x2+xfx2x21x242x+1,  khi phân thức này đã tối giản thì về cơ bản, ứng với mỗi một nghiệm của mẫu ta sẽ được một đường tiệm cận đứng, tuy nhiên phải lưu ý các trường hợp đặc biệt.

Cho hàm số y = f(x) có đồ thị như hình vẽ bên.  Đồ thị hàm số y = f(x) nhân căn bậc 2 của ( x^2 + x)/[f(x) - 2](x^2 - 1)(x^2 - 4)(2x +1) có bao nhiêu đường tiệm cận đứng (ảnh 2)

 

+) Ta thấy đồ thị y=fx  tiếp xúc với trục hoành tại điểm có hoành độ bằng 0 và cắt trục hoành tại hai điểm có hoành độ lần lượt là 1,2 nên phương trình fx=0 có nghiệm kép x=0 và hai nghiệm đơn x=1,x=2

 fx=x02x1x2gx=x2x1x2gx với gx vô nghiệm.

+) Đường thẳng y=2 cắt đồ thị hàm số  y=fx tại hai điểm có hoành độ x=a, x=b 1<a<0,2<b<3, nên phương trình fx=2 có hai nghiệm đơn  x=a, x=b 1<a<0,2<b<3

 fx2=xaxbhx với  hx vô nghiệm.

Vậy ta có y=fx.x2+xfx2x21x242x+1=gxhx.x2x1x2.x2+xxaxbx21x242x+1

=gxhx.x2.x2+xxaxbx+1x+22x+1

Ta thấy với x=a 1<a<0 x=12 thì x2+x<0 nên x2+x  không tồn tại.

Do đó đồ thị hàm số có các đường tiệm cận đứng là x=b,x=1,x=2.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số fx=ax3+ bx2+cx+ d a,b,c,d.  Đồ thị của hàm số  y=fx  như hình vẽ bên. Số nghiệm thực cùa phương trình 3fx+4=0  

Xem đáp án » 12/04/2022 6,499

Câu 2:

Cho cấp số cộng un có số hạng đầu u1=1 và công sai d=2. Tổng của 2020 số hạng đầu bằng

Xem đáp án » 12/04/2022 5,832

Câu 3:

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Khoảng cách giữa hai đường thẳng BC' CD'

Xem đáp án » 13/04/2022 5,744

Câu 4:

Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCDA0;1;1; B1;1;2;C1;1;0; D0;0;1.Tính độ dài đường cao AH của hình chóp A.BCD.

Xem đáp án » 13/04/2022 4,043

Câu 5:

Trong không gian với hệ tọa độ Oxyz, cho x2+y2+z2+2mx2m1ymz+m2=0 là phương trình của mặt cầu Sm.  Biết với mọi số thực m thì Sm luôn chứa một đường tròn cố định. Tìm bán kính I của đường tròn đó.

Xem đáp án » 13/04/2022 4,021

Câu 6:

Cho hàm số y=fx có đồ thị như hình vẽ bên. Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y=ffsinx trên đoạn π2;0.  Giá trị của Mm bằng
Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y = f(-f(sinx))  trên đoạn [-pi/2;0]. Giá trị của M - m  bằng (ảnh 1)

Xem đáp án » 13/04/2022 3,925

Câu 7:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P: x2y+2z3=0 và mặt cầu S: x2+y2+z210x+6y10z+39=0.  Từ một điểm M thuộc mặt phẳng P kẻ một đường thẳng tiếp xúc với mặt cầu S tại điểm N. Tính khoảng cách từ M tới gốc tọa độ biết rằng MN=4.

Xem đáp án » 13/04/2022 3,313
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua