Câu hỏi:

13/04/2022 1,047

Cho hàm số y=fx có đồ thị như hình vẽ bên. Đồ thị hàm số y=fx.x2+xfx2x21x242x+1 có bao nhiêu đường tiệm cận đứng?

Cho hàm số y = f(x) có đồ thị như hình vẽ bên.  Đồ thị hàm số y = f(x) nhân căn bậc 2 của ( x^2 + x)/[f(x) - 2](x^2 - 1)(x^2 - 4)(2x +1) có bao nhiêu đường tiệm cận đứng (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Trước tiên ta rút gọn phần thức fx.x2+xfx2x21x242x+1,  khi phân thức này đã tối giản thì về cơ bản, ứng với mỗi một nghiệm của mẫu ta sẽ được một đường tiệm cận đứng, tuy nhiên phải lưu ý các trường hợp đặc biệt.

Cho hàm số y = f(x) có đồ thị như hình vẽ bên.  Đồ thị hàm số y = f(x) nhân căn bậc 2 của ( x^2 + x)/[f(x) - 2](x^2 - 1)(x^2 - 4)(2x +1) có bao nhiêu đường tiệm cận đứng (ảnh 2)

 

+) Ta thấy đồ thị y=fx  tiếp xúc với trục hoành tại điểm có hoành độ bằng 0 và cắt trục hoành tại hai điểm có hoành độ lần lượt là 1,2 nên phương trình fx=0 có nghiệm kép x=0 và hai nghiệm đơn x=1,x=2

 fx=x02x1x2gx=x2x1x2gx với gx vô nghiệm.

+) Đường thẳng y=2 cắt đồ thị hàm số  y=fx tại hai điểm có hoành độ x=a, x=b 1<a<0,2<b<3, nên phương trình fx=2 có hai nghiệm đơn  x=a, x=b 1<a<0,2<b<3

 fx2=xaxbhx với  hx vô nghiệm.

Vậy ta có y=fx.x2+xfx2x21x242x+1=gxhx.x2x1x2.x2+xxaxbx21x242x+1

=gxhx.x2.x2+xxaxbx+1x+22x+1

Ta thấy với x=a 1<a<0 x=12 thì x2+x<0 nên x2+x  không tồn tại.

Do đó đồ thị hàm số có các đường tiệm cận đứng là x=b,x=1,x=2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Ta có D'AC//BA'C' nên dCD';BC'=dD'AC;BA'C'

=dD';BA'C'=dA';BA'C'

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Khoảng cách giữa hai đường thẳng BC' và  CD' là (ảnh 1)

Từ đây ta tính dA';BA'C'=a3

Lời giải

Đáp án C

Ta có 3fx+4=0fx=43, do đó số nghiệm của phương trình đã cho bằng với số giao điểm của đồ thị hàm số y=fx với đường thẳng y=43

Cho hàm số f(x) = ax^3 + bx^2 + cx + d ( a,b,c,d thuộc R). Đồ thị của hàm số y = f(x) như hình vẽ bên. Số nghiệm thực cùa phương trình 3f(x) +4 = 0  là (ảnh 1)

Dựa vào đồ thị, ta có đường thẳng y=43 cắt đồ thị hàm số đã cho tại 1 điểm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay