Câu hỏi:

13/04/2022 2,156

Cho hàm số y=fx có đúng ba điểm cực trị là 0, 1, 2 và có đạo hàm liên tục trên .  Khi đó hàm số y=f4x4x2 có bao nhiêu điểm cực trị?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Theo đề bài thì y=fx có đúng ba điểm cực trị là 0,1, 2 và y=f'x liên tục trên 

 f'x=0x=0x=1x=2ux=0;với ba nghiệm 0; 1; 2 là nghiệm đơn hoặc bội lẻ, còn ux=0  chỉ có nghiệm bội chẵn không thuộc tập 0;1;2

Đặt gx=f4x4x2,  ta có:

g'x=48xf'4x4x2.

g'x=048x=0f'4x4x2=0

g'x=048x=04x4x2=04x4x2=14x4x2=2u4x4x2=02x1=0xx1=02x12=0u4x4x2=0x=0x=1x=12u4x4x2=0

+) Xét phương trình  u4x4x2=0.

Giả sử a là một nghiệm của phương trình ux=0  thì từ a0;1;2  ta thấy phương trình 4x4x2=a  không có nghiệm nào thuộc tập 0;12;1.  Suy ra các nghiệm x=0;x=1  là nghiệm đơn còn x=12  là nghiệm bội 3 của phương trình f'4x4x2=0

+) Nếu phương trình u4x4x2=0 có nghiệm thì các nghiệm đó cũng là các nghiệm bội chẵn của phương trình  f'4x4x2=0

Vậy tập nghiệm đơn, nghiệm bội lẻ của phương trình gx=0 0;12;1.  Do đó, hàm số gx=f4x4x2 có 3 điểm cực trị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Ta có D'AC//BA'C' nên dCD';BC'=dD'AC;BA'C'

=dD';BA'C'=dA';BA'C'

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Khoảng cách giữa hai đường thẳng BC' và  CD' là (ảnh 1)

Từ đây ta tính dA';BA'C'=a3

Lời giải

Đáp án C

Ta có 3fx+4=0fx=43, do đó số nghiệm của phương trình đã cho bằng với số giao điểm của đồ thị hàm số y=fx với đường thẳng y=43

Cho hàm số f(x) = ax^3 + bx^2 + cx + d ( a,b,c,d thuộc R). Đồ thị của hàm số y = f(x) như hình vẽ bên. Số nghiệm thực cùa phương trình 3f(x) +4 = 0  là (ảnh 1)

Dựa vào đồ thị, ta có đường thẳng y=43 cắt đồ thị hàm số đã cho tại 1 điểm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay