Tính tích phân
\(I = \int\limits_1^2 {2x\sqrt {{x^2} - 1} dx} \) bằng cách đặt \(u = {x^2} - 1\), mệnh đề nào dưới đây đúng ?
Quảng cáo
Trả lời:
Chọn đáp án D
Đặt \(u = {x^2} - 1 \Rightarrow du = 2xdx\).
Khi \(x = 1 \Rightarrow u = 0;x = 2 \Rightarrow u = 3\).
Do đó \[I = \int\limits_1^2 {2x\sqrt {{x^2} - 1} dx} = \int\limits_0^3 {\sqrt u du} \].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn đáp án B
Ta có: \({u_2} = {u_1} + d \Rightarrow d = - 3\)
Khi đó \[{u_{10}} = {u_1} + 9d \Leftrightarrow {u_{10}} = 4 + 9.( - 3) \Leftrightarrow {u_{10}} = - 23\]
Lời giải
Chọn đáp án B
Ta có : \[{l^2} = {h^2} + {R^2} \Rightarrow {h^2} = {l^2} - {R^2} = {5^2} - {3^2} = 16\]\[ \Rightarrow h = 4\].
Áp dụng \[V = \frac{1}{3}.\pi .{R^2}.h = \frac{1}{3}.\pi {.3^2}.4 = 12\pi \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.