Câu hỏi:

14/04/2022 392

Hàm số \(y = \sqrt {x - {x^2}} \) nghịch biến trên khoảng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án A

TXĐ: \(D = \left[ {0;1} \right]\)

Ta có \(y' = {\left( {\sqrt {x - {x^2}} } \right)^\prime } = \frac{{ - 2x + 1}}{{2\sqrt {x - {x^2}} }};\)

Xét phương trình: \(y' = 0 \Leftrightarrow x = \frac{1}{2}\)

Ta có \(y' < 0 \Leftrightarrow \frac{{ - 2x + 1}}{{2\sqrt {x - {x^2}} }} < 0 \Leftrightarrow \frac{1}{2} < x < 1\) do đó hàm số sẽ nghịch biến trên \(\left( {\frac{1}{2};1} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn đáp án B

Ta có: \({u_2} = {u_1} + d \Rightarrow d = - 3\)

Khi đó \[{u_{10}} = {u_1} + 9d \Leftrightarrow {u_{10}} = 4 + 9.( - 3) \Leftrightarrow {u_{10}} = - 23\]

Lời giải

Chọn đáp án B

Ta có : \[{l^2} = {h^2} + {R^2} \Rightarrow {h^2} = {l^2} - {R^2} = {5^2} - {3^2} = 16\]\[ \Rightarrow h = 4\].

Áp dụng \[V = \frac{1}{3}.\pi .{R^2}.h = \frac{1}{3}.\pi {.3^2}.4 = 12\pi \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP